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PREFACE 

Since the pioneering work of Shannon in the late 1940's on the development of the theory of 
entropy and the landmark contributions of Jaynes a decade later leading to the development of 
the principle of maximum entropy (POME), the concept of entropy has been increasingly applied 
in a wide spectrum of areas, including chemistry, electronics and communications engineering, 
data acquisition and storage and retreival, data monitoring network design, ecology, economics, 
environmental engineering, earth sciences, fluid mechanics, genetics, geology, geomorphology, 
geophysics, geotechnical engineering, hydraulics, hydrology, image processing, management 
sciences, operations research, pattern recognition and identification, photogrammetry, 
psychology, physics and quantum mechanics, reliability analysis, reservoir engineering, statistical 
mechanics, thermodynamics, topology, transportation engineering, turbulence modeling, and so 
on. New areas finding application of entropy have since continued to unfold. The entropy 
concept is indeed versatile and its applicability widespread. 

In the area of hydrology and water resources, a range of applications of entropy have been 
reported during the past three decades or so. This book focuses on parameter estimation using 
entropy for a number of distributions frequently used in hydrology. In the entropy-based 
parameter estimation the distribution parameters are expressed in terms of the given information, 
called constraints. Thus, the method lends itself to a physical interpretation of the parameters. 
Because the information to be specified usually constitutes sufficient statistics for the distribution 
under consideration, the entropy method provides a quantitative way to express the information 
contained in the distribution. Furthermore, it also provides a way to derive a distribution from 
specified constraints. In other words, the hypotheses underlying the distribution have an easy 
interpretation. These advantages notwithstanding, the entropy-based parameter estimation has 
received comparatively little attention from the hydrologic community. It is hoped that this book 
will stimulate interest in this fascinating area of entropy and its application in hydrology, 
environmental engineering, and water resources. 

The subject matter of the book spans 22 chapters. The entropy concept and the principle 
of maximum entropy are introduced in Chapter 1. Also introduced therein are the entropy-based 
method of parameter estimation and parameter-space expansion method. The chapter is 
concluded with a brief account of the use of entropy as a criterion for goodness of fit and the 
dependence of entropy on the sample size. A short discussion of five other popular methods of 
parameter estimation, including the methods of moments, probability weighted moments, L­
moments, maximum likelihood estimation, and least squares, is presented in Chapter 2. Also 
presented there is a brief account of errors and statistical measures of performance evaluation, 
including bias, consistency, efficiency, sufficiency, resilience, standard error, root mean square 
error, robustness, and relative mean error. 

The next two chapters present the base distributions-uniform and exponential. The 
uniform distribution is discussed in chapter 3. Beginning with specification of the constraint, the 
chapter goes on to discuss construction of the zeroth Lagrange multiplier, estimation of the 
parameter, and the entropy of the distribution. Chapter 4 presents parameter estimation for the 
exponential distribution. The discussion on the entropy-based parameter estimation method is 
divided into the ordinary entropy method and the parameter-space expansion method. The first 
method includes specification of constraints, construction of the zeroth Lagrange multiplier, 
relation between Lagrange multipliers and constraints, relation between Lagrange multipliers and 
parameter, relation between parameter and constraint and distribution entropy. The second 
method discusses specification of constraints, derivation of the entropy function and the relation 
between distribution parameter and constraint. The chapter is concluded with a discussion of the 
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methods of moments, maximum likelihood estimation, probability weighted moments and L­
moments. 

The three succeeding chapters are devoted to normal and lognormal distributions. The 
organization of presentation, comprising both the ordinary entropy method and the parameter 
space expansion method, is similar in each chapter. The ordinary entropy method includes 
specification of constraints, construction of the zeroth Lagrange multiplier, relation between 
Lagrange multipliers and constraints, relation between Lagrange multipliers and parameters, 
relation between parameters and constraints, and distribution entropy. The parameter space 
expansion method includes specification of constraints, derivation of the entropy function, and 
relation between distribution parameters and constraints. Chapter 5, devoted to parameter 
estimation for the normal distribution, is concluded with a discussion of the methods of 
moments, maximum likelihood estimation and probability weighted moments. Chapter 6 treats 
the two-parameter lognormal distribution and is concluded with a short account of the methods 
of moments, maximum likelihood estimation and probability weighted moments. Chapter 7 is 
devoted to parameter estimation for the three-parameter lognormal distribution. In addition to 
discussing the methods of moments (regular and modified), maximum likelihood estimation 
(regular and modified) and probability weighted moments, the chapter is concluded with a 
comparative evaluation of these parameter estimation methods, including the entropy method, 
using Monte Carlo experimentation and field data. 

The next four chapters are devoted to the extreme-value distributions. The organization 
of discussion of the entropy-based parameter estimation is the same as in the preceding chapters. 
Chapter 8 discusses parameter estimation for extrf:me-value type I or Gumbel distribution. The 
other methods of parameter estimation included in the chapter are the methods of moments, 
maximum likelihood estimation,least squares, incomplete means, probability weighted moments, 
and mixed moments. The chapter is concluded with a comparative evaluation of the parameter 
estimation methods using both field data and Monte Carlo simulation experiments. Chapter 9 
discusses parameter estimation for log-extreme-v~lue type I or log-Gumbel distribution. It goes 
on to discuss the methods of moments and maximum likelihood estimation, and is concluded 
with a comparative evaluation of the parameter estimation methods using annual flood data. 
Chapter 10 discusses parameter estimation for extreme-value type III distribution. It also includes 
a discussion of the methods of moments and maximum likelihood estimation and a comparative 
evaluation of the parameter estimation methods. Chapter 11 discusses parameter estimation for 
the generalized extreme-value distribution, and is concluded with a discussion of the methods 
of moments, probability weighted moments, L-moments and maximum likelihood estimation. 

The next five chapters discuss parameter estimation for the Weibull distribution and 
Pearsonian distributions. The organization of presentation of the entropy-based parameter 
estimation is the same as in the preceding chapters. Chapter 12 discusses parameter estimation 
for the Weibull distribution. It goes on to discuss the methods of moments, maximum likelihood 
estimation, probability weighted moments and least squares, and is concluded with a 
comparative evaluation of the methods using rainfall data and Monte Carlo experiments. Chapter 
13 discusses parameter estimation for gamma distribution. It also presents a discussion of the 
methods of moments, cumulants, maximum likelihood estimation,least squares, and probability 
weighted moments. By applying these parameter estimation methods to unit hydrograph 
estimation and flood frequency analysis, the chapter is ended with a comparative assessment of 
the methods. Chapter 14 discusses parameter estimation for Pearson type III distribution. It also 
includes a discussion of the methods of moments, maximum likelihood estimation and 
probability weighted moments; as well as a comparative assessment of the estimation methods 
using annual maximum discharge data. Chapter 15 discusses parameter estimation for log­
Pearson type III distribution. It also includes a treatment of the methods of moments (direct as 
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well as indirect), maximum likelihood estimation, and mixed moments. Finally, it presents a 
comparative evaluation of the estimation methods using field data as well as Monte Carlo 
experiments. Chapter 16 discusses parameter estimation for beta distribution (or Pearson type 
I) distribution and is concluded with a discussion of the methods of moments and maximum 
likelihood estimation. 

The next two chapters present two and three parameter log-logistic distribution. The 
organization of presentation of the entropy-based parameter estimation is similar to that of the 
preceding chapters. Chapter 17 discusses parameter estimation for two-parameter log-logistic 
distribution. It also treats the methods of moments, probability weighted moments and maximum 
likelihood estimation; and is concluded with a comparative evaluation of the estimation methods 
using Monte Carlo simulation experiments. Chapter 18 discusses parameter estimation for three­
parameter log-logistic distribution. It also presents the methods of moments, maximum 
likelihood estimation and probability weighted moments; as well as a comparative assessment 
of the parameter estimation methods. 

The next three chapters present Pareto distributions. The organization of presentation of 
the entropy-based parameter estimation is the same as in the preceding chapters. Chapter 19 
discusses parameter estimation for the 2-parameter Pareto distribution. It also discusses the 
methods of moments, maximum likelihood estimation and probability weighted moments. The 
chapter is ended with a comparative assessment of parameter estimation methods using Monte 
Carlo simulation. Chapter 20 discusses parameter estimation for the 2-parameter generalized 
Pareto distribution. It also discusses the methods of moments, maximum likelihood estimation 
and probability weighted moments, and presents a comparative assessment of the parameter 
estimation methods. Chapter 21 discusses parameter estimation for the 3-parameter generalized 
distribution. It also includes a discussion of the methods of moments, maximum likelihood 
estimation and probability weighted moments; as well as a comparative evaluation of the 
parameter estimation methods. 

Chapter 22 discusses parameter estimation for the two-component extreme-value 
distribution. The first method is the ordinary entropy method that includes a discussion of 
specification of constraints, construction of zeroth Lagrange multiplier, relation between 
parameters and constraints, and estimation of parameters, including point estimation and regional 
estimation. The chapter also includes a discussion of the methods of maximum likelihood 
estimation and probability weighted moments, and is concluded with a comparative evaluation 
of the parameter estimation methods. 

V.P. Singh 
Baton Rouge, Louisiana 
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CHAPTER 1 

ENTROPY AND PRINCIPLE OF MAXIMUM ENTROPY 

Clausius coined the term 'entropy' from the Greek meaning transformation. Thus, entropy 
originated in physics and occupies an exceptional position among physical quantities. It does not 
appear in the fundamental equations of motion. Its nature is, rather, a statistical or probabilistic 
one, for it can be interpreted as a measure of the amount of chaos within a quantum mechanical 
mixed state. It is an extensive property like mass, energy, volume, momentum, charge, number 
of atoms of chemical species, etc., but, unlike the:se quantities, it does not obey a conservation 
law. Entropy is not an observable; rather it is a function of state. For example, if the state is 
described by the density matrix, its entropy is given by the van Neumann formula. In physical 
sciences, entropy relates macroscopic and microscopic aspects of nature and determines the 
behavior of macroscopic systems in equilibrium. 

Entropy can be considered as a measure of the degree of uncertainty or disorder 
associated with a system. Indirectly it also reflects the information content of space-time 
measurements. Entropy is viewed in three different but related contexts and is hence typified by 
three forms: thermodynamic entropy, statistical-mechanical entropy, and information-theoretical 
entropy. In environmental and water resources, the: most frequently used form is the information­
theoretical entropy. Shannon (1948a, b) developed the theory of entropy and Jaynes (1957a, b) 
the principle of maximum entropy. The works of Shannon and Jaynes form the basis for a wide 
range of applications of entropy in recent years in hydrology and water resources. Singh and 
Rajagopal (1987) discussed advances in application of the principle of maximum entropy 
(POME) in hydrology. Rajagopal et al. (1987) presented new perspectives for potential 
applications of entropy in water resources res(~arch. Singh (1989) reported on hydrologic 
modeling using entropy. A historical perspective on entropy applications in water resources was 
presented by Singh and Fiorentino (1992). Harmancioglu et al. (1992b) discussed the use of 
entropy in water resources. Alpaslan et al. (1992) discussed the role of entropy, and 
Harmancioglu et al. (1992a) its application in design and evaluation of water quality monitoring 
networks. Singh (1997) reported on the use of entropy in hydrology and water resources. These 
surveys have discussed the state-of-art of entropy-based modeling in environmental and water 
resources. One of the most useful applications of entropy is parameter estimation. Before 
discussing this particular application, a brief discULssion of entropy theory and POME is in order. 

1.1 Entropy Theory 

We consider a random variable whose behavior is described by a probability distribution. There 

V. P. Singh, Entropy-Based Parameter Estimation in Hydrology
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is some uncertainty associated with this distribution and, for that matter, with any distribution 
employed to describe the random variable. The concept of entropy provides a quantitative 
measure of this uncertainty. To that end, consider a probability density function (pdt) f(x) 
associated with a dimensionless random variable X. The dimensionless random variable may 
be constructed by dividing the observed quantities by its mean value, e.g., annual flood maxima 
divided by mean annual flood. As usual, f(x) is a positive function for every x in some interval 
(a, b) and is normalized to unity such that 

{h f(x) dx = 1 (1.1) 

We often make a change of variable from X to Z, based on physical or mathematical 
considerations, as 

X=W(Z) (1. 2) 

where W is some function. Under such a transformation, quite generally we have the mapping 

X: (a,b)~Z: (L,U) (1.3) 

where a = W(L) and b = W(U). Thus, L and U stand for lower and upper limits in the Z-variable. 
Then, 

in which 

f(x) dx = f(x = W(z)) I dx I dz 
dz 

"" g(z) dz 

g(z) = f(x 

(1.4) 

(1.5) 

Here g(z) is, again, a pdf but is in the Z-variable, and has positivity as well as normalization 
properties: 

(1.6) 

Often f (x) is not known beforehand, although some of its properties (or constraints) may be 
known, e.g., moments, lower and upper bounds, etc. These constraints and the condition in 
equation (l.I) are generally insufficient to define f(x) uniquely but may delineate a set of feasible 
distributions. Each of these distributions contains a certain amount of uncertainty which can be 
expressed by employing the concept of entropy. 
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The most popular measure of entropy was first mathematically given by Shannon (1948a, 
b) and has since been called the Shannon entropy functional, SEF in short, denoted as I[ f] or I[x]. 
It is a numerical measure of uncertainty associated with f(x) in describing the random variable 
X, and is defined as 

IUl = I[x] = - k lab f(x) In [f(x)/m(x)] dx (1.7) 

where k > 0 is an arbitrary constant or scale factor depending on the choice of measurement units, 
and m(x) is an invariant measure function guarante'~ing the invariance ofI[f] under any allowable 
change of variable, and provides an origin of measurement of I[f]. Scale factor k can be absorbed 
into the base of the logarithm and m(x) may be taken as unity so that equation (1.7) is often 
written as 

IUl = - fab f(x) In f(x) dx; J~b f(x) dx = 1 (1.8) 

We may think of I[f] as the mean value of -lnf(x). Actually, -I measures the strength, +1 
measures the weakness. SEF allows choosing that f(x) which minimizes the uncertainty. Note 
that f(x) is conditioned on the constraints used for its derivation. Verdugo Lazo and Rathie 
(1978), and Singh et al. (1985, 1986) have given expressions of SEF for a number of probability 
distributions. 

SEF with the transformed function g(z) is written accordingly as 

I[g] = - fLU g(z) In g(z) dz (1.9) 

It can be shown that 

I[f] = l[g] + f U g(z) In Idx I dz 
L dz 

= I[g] + fb f(x) In I ~1x I dx 
a dz 

(LlO) 

In practice, we usually have a discrete set of data points Xi' i = 1,2, ... , N, instead of a 
continuous variable X. Therefore, the discrete analog of equation (1.8) can be expressed as 

i=N 

IUl = - L 1; In 1;; L 1; = 1 (1.11) 
i=1 i 

in which fi denotes the probability of occurrence of Xi , and N is the sample size. Here 0 :> fi :> 
1 for all i. The passage from the continuous mode to the discrete one and vice versa is subtle 
because fi in equation (1.11) is a probability and f(x) in equation (1.8) is a probability density. 
The use of m(x), as in equation (1.2), facilitates, to some extent, the understanding of these 
transformations from the discrete mode to the continuous one and vice versa. Except for 
mentioning this point, we shall not discuss this aspect further. Mostly, we will use the form in 
equation (1.8) in formal analysis but in actual numerical work, the discrete version in equation 
(1.11) is employed. For a clear discussion of continuous random variables, their transformations, 
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and probability distributions, one may refer to Rohatgi (1976). 
Shannon (1948a, 1948b) showed that I is unique and the only functional that satisfies the 

following properties: (1) It is a function of the probabilities fl' f2' ... , fN • (2) It follows an 
additive law, i.e., I[xy] = I[x] + I[y]. (3) It monotonically increases with the number of outcomes 
when fj are all equal. (4) It is consistent and continuous. 

1.2 Principle of Maximum Entropy 

The principle of maximum entropy (POME) was formulated by Jaynes (1961, 1982). According 
to this principle, "the minimally prejudiced assignment of probabilities is that which maximizes 
the entropy subject to the given information." Mathematically, it can be stated as follows: Given 
m linearly independent constraints Cj in the form 

Ci = {b y/x) f(x)dx, i = ,2, ... ,m (1.12) 

where Yj (x) are some functions whose averages over f(x) are specified, then the maximum of I, 
subject to the conditions in equation (1.12), is given by the distribution 

m 

f(x) = exp [- Ao - L Ai Yi (x)] (1.13) 
i~1 

where Aj , i = 0, 1, ... , m, are Lagrange multipliers and can be determined from equations (1.12) 
and (1.13) along with the normalization condition in equation (1.1). 

The Lagrange multipliers can be determined as follows.According to POME, we 
maximize equation (1.8), subject to equation (1.12), that is, 

o (-J) = {b [1 + lnf(x)] of(x)dx (1.14) 

The function I can be maximized using the method of Lagrange multipliers. This introduces 
parameters (Ao - 1), Al ' A2 ' ... ,An' which are chosen such that variations in a functional off(x) 

m 

F(f) = - {b f(x) [lnf(x) + (Ao - 1) + ~ \ Yi (x)] dx 
(1.15) 

vanish: 

of(f) - fb [lnf(x) + 1 + (Ao - 1) + f \ Yi (x)] of(x) dx = ° (1.16) 
a i=l 

Equation (1.16) produces 
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m 

f(x) = exp [ - Ao - L Ai Yi (X)] (1.17) 
i=i 

which is the same as equation (1.13). 
The value ofI for such f(x), as given by equation (1.13), is 

Im[f] = - lab f(x) in f(x) dx = Ao + t \ Ci (1.18) 

Subscript m attached to I is to emphasize the number of constraints used. This, however, raises 
an important question: How does I change with thl~ changing number of constraints? To address 
this question, let us suppose that g(x) is some other pdf such that Jab g(x)dx = 1 and is found by 
imposing n constraints (n > m) which include the previous m constraints in equation (1.12). 
Then 

where 

and 
Im[f] - In[g]L..!. fb g(x) (f(x) - g(X).)2 dxLO 

2 a g(x) 

In order to prove these statements, we consider 

l[g If] = f b g(x) in [ g(x) ] dx 
a f(x) 

Because of Jensen's inequality, 

inxLl-..!. 
x 

we have, upon normalization of f(x) and g(x), 
I[glf]LO 

From equation (1.22), this relation may be written as 

- lab g(x) In g(x) dX5 - lab g(x) in f(x) dx 

(1.19) 

(1.20) 

(1.21) 

(1.22) 

(1.23) 

(1.24) 

(1.25) 

Inserting equation (1.17) for f(x) in the right side of this inequality and the definitions given by 
equations (1.18) and (1.20), we get equation (1.19). To obtain equation (1.21), we note that 
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I[g 111 = J b g(x) In [ g(x) ] dx 
a I(x) 

- l Jb g(x) In [1 + I(x) - g(x) f dx 
2 a g(x) 

(1.26) 

~ + l J b g(x) (/(x) - g(X»2 dx 
2 a g(x) 

Since - J! g(x) In I(x) dx = - J~ I(x) ln/(x)dx in this problem, because the first m 
constraints are the same, we have 

I[g 111 = Im[f1 - 11I [g] (1.27) 

and hence we obtain equation (1.21). The significance of this result lies in the fact that the 
increase in the number of constraints leads to less uncertainty as to the information concerning 
the system. Since equation (1.27) defines the gain in information or reduction in uncertainty due 
to increased number of constraints, an average rate of gain in information I, can be defined as 

(1.28) 
n - m 

1.3 Entropy-Based Parameter Estimation 

The general procedure for deriving an entropy-based parameter estimation method for a 
frequency distribution involves the following" o'ps: (1) Define the given information in terms 
of constraints. (2) Maximize the entropy sClbject to the given information. (3) Relate the 
parameters to the given information. More specifically, let the available information be given 
by equation (1.12). POME specifies f(x) by equation (1.13). Then inserting equation (1.13) in 
equation (1.8) yields 

m 

I[f1 = AD + L \ Ci (1.29) 
i=l 

In addition, the potential function or the zeroth Lagrange multiplier Ao is obtained by inserting 
equation (1.13) in equation (1.1) as 

{b exp [- AD - ~ Ai Yi ] dx (1.30) 

resulting in 
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m 

AO = In Jab exp [- tt Ai y;l dx (1.31) 

The Lagrange multipliers are related to the given information (or constraints) by 

aAo 
- - = C. 

aA. I 
I 

(1.32) 

It can also be shown that 

a2A a2A 
__ 0 =var [y.(x)];-_o_=cov [y.(x), y,.(x)],i;;j 

,2 I aA.aA. I 
aAi I J 

(1.33) 

With the Lagrange multipliers estimated from equations (1.32) and (1.33), the frequency 
distribution given by equation (1.13) is uniquely defined. It is implied that the distribution 
parameters are uniquely related to the Lagrange multipliers. Clearly, this procedure states that 
a frequency distribution is uniquely defined by specification of constraints and application of 
POMBo 

Quite often, we anticipate a certain structure of pdf, say in the form [this is normalized 
according to equation (1.1)], 

m 

f(x) = A Xk exp [- L Ai Yi(X)] 
;=\ 

(1.34) 

where ylx) are known functions and k may not be known explicitly but the form Xk is a guess. 
Then we may apply POMB as follows. We explicitly construct the expression for I[f] in the 
form. 

/[f1 
m 

- In A - k E[ln x] + L Aj E[yj(x)] 
j=\ 

(1.35) 

We may then seek to maximize I[f] subject to the constraints, E[ln x], E[Yi(X)], which can be 
evaluated numerically by means of experimental data. In this fashion, we arrive at an estimation 
of the pdf which is least biased with respect to the specified constraints and is of the surmised 
form based upon our intuition. This provides a method of deducing the constraints, given a 
"form" for the pdf. 

This procedure can be applied to derive any probability distribution for which appropriate 
constraints can be found. The hydrologic import of constraints for every distribution, except a 
few, is not clear at this point. This procedure needs modification, however, if the distribution 
is expressed in inverse form as for example the Wakeby distribution. 

The above discussion indicates that the Lagrange multipliers are related to the constraints 
on one hand and to the distribution parameters on the other hand. These two sets of relations are 
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used to eliminate the Lagrange multipliers and develop, in tum, equations for estimating 
parameters in terms of constraints. For example, consider the gamma distribution. The Lagrange 
multipliers Al and A2 are related to the constraints E(x) and E(ln x), and independently to the two 
distribution parameters. Finally, the relation between parameters and the specified constraints 
is found. Thus, POME leads to a method of parameter estimation. 

1.4 Parameter-Space Expansion Method 

The parameter-space expansion method was developed by Singh and Rajagopal (1986). This 
method is different from the previous entropy method in that it employs enlarged parameter space 
and maximizes entropy subject to both the parameters and the Lagrange multipliers. An 
important implication of this enlarged parameter space is that the method is applicable to 
virtually any distribution, expressed in direct form, having any number of parameters. For a 
continuous random variable X having a probability density function f (x,e) with parameters e, 
SEF can be expressed as 

1[J1 = f!(x;e)lnf(x,e)dx (1.36) 

The parameters of this distribution, e, can be estimated by achieving the maximum of 
I[f]. The method works as follows: For the given distribution, the constraints (to be obtained 
from data) are first defined. Using the method of Lagrange multipliers (as many as the number 
of constraints), the POME formulation of the distribution is obtained in terms of the parameters 
to be estimated and the Lagrange multipliers. This formulation is used to define SEF whose 
maximum is then sought. If the probability distribution has N parameters, e i , I=1,2,3, ..... ,N, and 
(N-I) Lagrange multipliers, Ai ' I=I,2,3, ...... ,(N-I), then the point where I[f] is maximum is a 
solution of (2N-I) equations: 

and 

al[J1 =O,i= 1,2,3, .... ,N-I 
aAj 

al[J1 =O,i=I,2,3, ...... ,N 
ae j 

Solution of equations (1.37) and (1.38) yields distribution parameter estimates. 

1.5 Entropy as a Criterion for Goodness of Fit 

(1.37) 

(1.38) 

It is plausible to employ entropy to evaluate goodness of fit and consequently delineate the best 
parameter estimates of a fitted distribution. This can be accomplished as follows. For a given 
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sample, compute entropy and call it observed entropy. To this end, we may use an appropriate 
plotting position formula. Then, compute parameters of the desired distribution by different 
methods (moments, maximum likelihood, least squares, POME, etc.). Calculate the entropy for 
each of these methods, and call it computed entropy. The method providing the computed 
entropy closest to the observed entropy is deemed the best method. 

1.6 Dependence of Entropy on Sample Size 

In practice, we usually employ a discrete set of data points, Xj , i = 1,2, ... , N, to determine the 
constraints the representativeness and accuracy of which depend upon the sample size. To 
emphasize the dependence of I on N, we write equation (1.11) as 

N N 
[N[f] - E !(xi ; a) In !(xi ; a), with E !(xi ; a) 1 

i=J i=J 

where a is a parameter set. Using the inequality 

we obtain 

f(x) - f2 (x) s f(x) In f(x) s 1 - f(x) 

N 

- E !2(XJ ;a) s[N[f] sN - 1 
i=1 

If however, fj = lIN (uniform distribution) then 

o S IN [f] s In N 
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CHAPTER 2 

METHODS OF PARAMETER ESTIMATION 

There is a multitude of methods for estimating parameters of hydrologic frequency models. 
Some of the popular methods used in hydrology include (1) method of moments (Nash, 1959; 
Dooge, 1973; Harley, 1967; O'Meara, 1968; VandeNes and Hendriks,1971;Singh,1988);(2) 
method of probability weighted moments (Greenwood, et al., 1979); (3) method of mixed 
moments (Rao, 1980,1983; Shrader, et al., 1981); (4)L-moments (Hosking, 1986, 1990,1992); 
(5) maximum likelihood estimation (Douglas, et al., 1976; Sorooshian, et al., 1983; Phien and 
Jivajirajah, 1984); and (6) leastsquaresmethod(Jones,1971; Snyder,1972;Bree,1978a,1978b). 
A brief review of these methods is given here. 

2.1 Method of Moments for Continuous Systems 

The method of moments is frequently utilized to estimate parameters of linear hydrologic models 
(Nash, 1959; Diskin, 1967; Diskin and Boneh, 1968; Dooge, 1973; Singh, 1988). Nash (1959) 
deveoped the theorem of moments which relates the moments of input, output and impulse 
response functions of linear hydrologic models. Diskin (1967) and Diskin and Boneh (1968) 
generalized the theorem. Moments of functions are amenable to use of standard methods of 
transform, such as the Laplace and Fourier transforms. Numerous studies have employed the 
method of moments for estimating parameters of frequency distributions. Wang and Adams 
(1984) reported on parameter estimation in flood frequency analysis. Ashkar et al. (1988) 
developed a generalized method of momemts and applied it to the generalized gamma 
distribution. Kroll and Stedinger (1996) estimated moments of a lognormal distribution using 
censored data. 

2.1.1 DEFINITION AND NOTATION 

Let X be a continuous variable and f(x) its function satisfying some necessary conditions. The 
r-th moment of f(x) about an arbitrary point is denoted as M:. This notation will be employed 
throughout the chapter. Here M denotes the moment, r~ 0 is the order of the moment, the 
subscript denotes the order of the moment, the superscript denotes the point about which to take 
the moment, and the quantity within the parentheses denotes the function, in normalized form, 
whose moment to take. Then, the r-th moment of the function f(x) can be defined as 

(2.1) 

V. P. Singh, Entropy-Based Parameter Estimation in Hydrology
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This is the definition used normally in statistics. In engineering, however, the area enclosed by 
the function f(x) may not always be one. Then, the definition of equation (2.1) becomes 

r (x-a)rf(x)dx 
Mra(f) = --~------

r:f(x)dx 
(2.2) 

As the denominator in equation (2.2) defines the area under the curve which is usually unity or 
made to unity by normalization, the two definitions are numerically the same. In this text we use 
the definition of equation (2.1) with f(x) normalized beforehand. The variable X mayor may not 
be a random variable. 

Analogous to equation (2.1), the absolute moment of order r about a, wra , can be defined 
as 

(2.3) 

Here W stands for the absolute moment. Clearly, if r is even, then the absolute moment is equal 
to the ordinary moment. Furthermore, if the range of the function is positive, then the absolute 
moments about any point to the left of the start of the function are equal to the ordinary moments 
of corresponding order. 

It is, of course, assumed here that the integral equation (2.1) converges. There are some 
functions which will possess moments of lower order, and some will not possess any except the 
moment of zero order. However, if a moment of higher order exists, moments of all lower order 
must exist. Moments are statistical descriptors of a distribution and reflect on its qualitative 
properties. For example, if r=0 then equation (2.1) yields 

Moa = r: (x-a)o f(x)dx = r:f(x)dx = 1 (2.4) 

Thus, the zero-order moment is the area under the curve defined by f(x) subject to -oo<x<oo. 
If r= 1, then equation (2.1) yields 

Mt = f: (x-a)! I(x) dx = 11 - a (2.5) 

where 11 is the centroid of the area or mean. Thus, the first moment is the weighted mean about 
the point a. If a=O, the first moment gives the mean. When a =].l, then the r-th moment about 
the mean is 

(2.6) 

Henceforth we will, for simplicity of notation, drop the superscript if the moment is taken about 
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O. The descriptive properties of the moments with respect to a specific function can be 
summarized as follows: 

Mo= Area 

Ml = Lag or Mean 

M~ = Variance, a measure of dispersion of the function about the mean 

Mj= Measure of skewness of the function 

M~= Kurtosis, a measure of the peakedness of the function 

2.1.2 MOMENT GENERATING FUNCTION 

The moments of a function can be determined either directly by using their definition in equation 
(2.1) or by using generating functions. This latter approach is more viable, more frequently used 
and has other advantages. One generating function is the moment generating function (MGF), 
G ( e) . The MGF of f(x) can be defined as 

(2.7) 

where E is the expectation operator ande is the transform variable of MGF. We can write 
equation (2.7) as 

G(e) = I-: exp(ex)f(x) dx (2.8) 

If G ( e) exists then it is continuously differentiable in some neighborhood ofthe origin. 
If G(e) in equation (2.8) is differentiated r times with respect to e, we get 

d r 
-G(e) = fm X r[e 8xlftx)dx 
de r -m 

(2.9) 

If e =0, we obtain 

(2.10) 

Equation (2.10) shows generation of moments by taking the derivatives of MGF and evaluating 
the derivatives at e = O. The symbol on the left hand side is to be interpreted to mean the r-th 
derivative of G( e) evaluated at e = O. Thus, the moments of a function can be obtained by 
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differentiation of its moment generating function. Furthermore. if we expand G ( e) about e = 0 
by Taylor series then 

G(e) = t [d rG(e) I _] er 
r=O der a-o r! 

Equation (2. 11 a) can be written as 

m er 
G(e)=~M-L.. r, 

r=O r. 

(2. 11 a) 

(2.11b) 

Equation (2.11 b) shows that Mr'S are nothing but coefficients of er in the Taylor series 
expansion of MGF. This same result can be obtained by expanding the exponential term in 
equation (2.7): 

(2.12) 

On taking expectation of both sides. we obtain 

m (ex), m er m er 
G(e)=E[L -] = L -E[xl = LM-

r=O r! r=O r! r=O r r! 
(2.13) 

Equation (2.13) shows that Mr's are the coefficients of er in the exponential expansion. 

2.1.3 CHARACTERISTIC FUNCTION 

Unfortunately. the moment generating functions do not always exist. Often it is better to work 
with the characteristic function (CF) which always exists. A characteristic function can be 
defined as 

(2.14) 

where C(e) can be viewed as an integral transform of f(x). The integral of C(e) converges 
absolutely and uniformly for the functions of our interest in hydrology. 

If c ( e) is differentiated r times with respect to e. then 

d r fm 'a -CCe) = (i)' e I Xx 'f(x)dx 
der -m 

(2.15) 
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Evaluating equation (2.15) at e = 0, one gets 

~C(8) 18 0 0 = (iYf~ x rj(x) dx = (iYE[x 1 = (iY M 
d8' _~ r 

Therefore, equation (2.16) shows that 

(2.16) 

(2.17) 

Thus, the moments of a function can be obtained by differentiation of the corresponding 
characteristic function. Hence, if C(8) is known explicitly, the moments about the origin can 
be obtained. 

Moreover, if we expand C (e) by Taylor series about the origin, we get 

C(8) = t (8Y [~C(8)1 _] 
roO r! d8' 8-0 

= i-- (i8Y M 
L..J , r 
roO r. 

(2.18) 

We find that the moments about the origin are the coefficients of 8' in the expansion of C(8). 
This same result is obtained by expanding the exponential term in equation (2.14): 

C(8) =E[i-- (i8xY ] = i-- (iay E[x 1 = i-- (iay M 
L..J , L..J, L..J, r 
roO r. roO r. roO r. 

(2.19) 

It is interesting to contrast C ( e) with the Fourier transform which can be defined for a function 
f(x) as 

(2.20) 

where F(w) is the Fourier transform of f(x). A comparison of equations (2.20) and (2.14) shows 
that the Fourier transform is equivalent to the characteristic function. In terms of the Fourier 
transform, the function f(x) can be defined as 

Likewise, 

I(x) =-I-f~ F(w)e -,wxdw 
2n -~ 

(2.21) 
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21t -~ 

(2.22) 
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Thus, it is seen that moments of a function can be generated using Fourier transform as well. 

2.1,4 LAPLACE TRANSFORM 

For certain functions the integral represented by G ( e) or F(w) may not exist. It is then necessary 
to use the Laplace transform. For functions that are zero for x <0, the ordinary Laplace transform, 
with Laplacian variable s, can be. used in which we have 

F(s) =L [f(x)] = (f(x)e -SA: dx (2.23) 

For functions which have values for x<O, we must use the bilateral Laplace transform given by 

F(s)=L[f(x)] = r:f(x)e-SXdx (2.24) 

Differentiating r times the function F(s) with respect to s and evaluating the derivatives at s=O, 

d r 
-F(s) 1= = r~(-I)'xrf(x)dx=(-I)'M 
ds r S 0 Jo r 

(2.25) 

Thus, we see that once the Laplace transform of a function is known, its moments can be 
obtained by differentiation. 

2.1.5 FOURIER TRANSFORM 

The moments of a function f(x) can also be obtained by employing the Fourier transform 
expressed as 

F(w) = T [fix) ] = r: e iwx fix) dx (2.26) 

in which T denotes the Fourier transform. Differentiating r times the function F(w) with respect 
to w and evaluating the derivatives at w=O, one obtains 

~F(w) Iw=o =f~ (-ix)'f(x)dx = (-i),Mr 
dw r -~ 

(2.27) 

Thus, if the Fourier transform of a function is known, its moments about the origin can be 
obtained by differentiation. 

2.1.6 CHANGE OF REFERENCE POINTS FOR MOMENTS 

Let a and b be two constants and let c=b-a. Let us denote the r-th moment of a function about 
a and b respectively by M: and M:. Expanding (x-a) r binomially, one gets 
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(x -a), = (x -b +b -a), = (x -b + c)' = t (~)(x-b)'-j c j 
]=0 V 

Then we write the r-th moment about a: 

Mra = r: (x-a)'fix)dx 

Substituting equation (2.28) in equation (2.29) one obtains 

Mra =f-~ t (~)(X-b)'-j c j fix) dx 
~ j=O V 

= t (r) C j f-~ (x-b)'-j fix) dx 
j=O V ~ 

(2.28) 

(2.29) 

(2.30) 

Equation (2.30) gives the r-th moment of a function about a in terms of its r-th moment and lower 
moments about b. Writing the suffixes as power indices (without. of course, interpreting them 
as such except for the purpose of expansion), the symbolic mnemonic form of the above 
relationship becomes 

(2.31) 

in which [M bJr is interpreted as Mrb for all r. If we specialize by taking a as the origin and b the 
centroid or the first moment p, then we get 

(2.32) 

The symbolic mnemonic form of the above relationship can be expressed as 

(2.33) 

In particular, this expression leads to 

(2.34) 
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M =MJl+4I1MJl+6MJlIl2+114 
4 4 r 3 2 r r 

and so on. Equation (2.33) can be manipulated to express moments about the controid in terms 
of the moments about the origin. In particular, this yields 

M6=1 

Mi=o 
(2.35) 

Mj' =M3 -3M211 +2113 

M: =M4 -4M311 +6112M2 -3114 

Equation (2.35) can also be derived directly. Writing the r-th moment about point b, one 
gets 

b Joo Mr = -00 (x-b)rj(x)dx (2.36) 

Expanding (x-bY binomially, one obtains 

(x-bY = (x-a-b+aY = (x-a-cY 

= t (r)(x-ay-j ( -cy 
j=O ] 

(2.37) 

Inserting equation (2.37) into the general expression forMrb in equation (2.36), one gets 

(2.38) 

The symbolic mnemonic form of this relationship is 

b Mr = [Ma-c)"jorallr (2.39) 

In particular, if a=O and b=l1, then 
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(2.40) 

Likewise, 

(2.41) 

Again, the coefficients of the expansions in equation (2.41) are those of the binomial expansion. 
The powers of terms containing the quantity].1 are real powers, the powers ofterms containing 
M are not real powers but only indices of the moments concerned. 

2.1.7 INV ARIANGE PROPERTY 

The moments have an invariance property which states that when the variate-values are 
multiplied by a constant, the r-th moment Mr is multiplied by a'. This is evident at once from 
its definition. 

2.1.8 INVERSION OF MOMENTS 

Moments can be used as parameters to represent distribution functions. A question arises: Can 
the distribution function be derived from a knowledge of the values of the moments? Let us 
recall that 

(2.42) 

If the moments about the origin are known for a well-behaved function, the Laplace transform 
can be expressed in terms of these moments by means of Taylor series as 

ro M 
F(s) = E (_s)'_r 

r=O r! 
(2.43) 

Therefore, a knowledge of the Laplace transform gives certain information about the behavior 
of the original function. If, however, we wish to explicitly know the complete function exactly, 
it would be necessary to invert the Laplace transform numerically. This can perhaps be best done 
by using orthogonal functions. 

2.1.9 DIMENSIONLESS MOMENTS 

It is often convenient to use dimensionless moments, which are independent of one another, in 
model calibration. Nash (1959) used dimensionless moments about the mean defined as 

(2.44) 
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(2.45a) 

(2.45b) 

where m2 , m3 , and m4 are generally called shaped factors. The objective of dividing by the first 
moment is to remove the time scale effect from higher moments and thus make them 
dimensionless. These shape factors can be used to compare distribution functions by 
constructing an m3 versus m2 diagram as suggested by Nash (1959) and done by Harley (1967), 
O'Meara (1968), and Dooge (1973), among others. 

A more popular way of obtaining dimensionless moments is to use the second central 
moment as the divisor. Thus, the rth dimensionless moment is obtained as 

(2.46) 

where s, (x) is the rth moment of x. It should be noted that higher order moments can be 

expressed as functions of lower moments. For two-parameter distributions, M j can be 

expressed as a function of Mr. As an example, the coefficient of skewness Cs = 
M j /( M r )3/2 can be expressed as a unique function ofthe coefficient of variation. Likewis e, 

the coefficient of kurtosis, Ck = M : / ( M r ) 2 can be expressed as a unique function of Cs. 

Thus, the Cs - Ck relationship defines a moment ratio diagram. Sometimes, the moments ratios 
are squared, as done by Bobee et al. (1993). The moments ratio diagrams are a very useful tool 
in selection of a distribution, comparing shapes of distributions, etc. Johnson and Kotz (1985) 
provided a comprehensive account of these diagrams and their usefulness. 

2.2 Method of Moments for Discrete Systems 

2.2.1 DEFINIDON 

If the function is discrete, represented as f j , j , = -00, • • • , -1, 0 , 1 , 2, . . . I 00, then its r-th 
moment about the origin or any other arbitrary point can be defined in a manner analogous to that 
for continuous functions. For convenience, let the arbitrary point be the origin. Then, the r-th 
moment is defined as 

(2.47) 
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It is assumed here that f m is normalized, that is, 

(2.48) 
m=-oo 

Otherwise, 

(2.49) 
m""-OD m=-oo 

It is thus seen that equations (2.47) and (2.49) are analogous to equations (2.1) and (2.2). 

2.2.2 MOMENT GENERATING FUNCTION 

The moments of a discrete function can be determined either directly from their definition or by 
using generating functions. If x is discrete and takes the value j with probability P j then MGF 
is 

(2.50) 

in which P is probability generating function. The r-th moment can be determined by 
differentiating r times G ( e) with respect to e and then equating to zero: 

drG(e) I _ =M 
der 8-0 r 

(2.51) 

Therefore, equation (2.10) also holds for discrete functions. 
For discrete functions the Z-transform can be used as a moment generating function in 

the same way as the Laplace transform is used for continuous functions. The Z-transform of the 
function f j is defined for the bilateral case as 

~ 

Z(f.) = F(z) = L f.z-j 
J . J 

(2.52) 
J;-~ 

and for the unilateral case as 

~ 

Z(!,.)= F(z) = L f.z-j 

J j=O J 
(2.53) 

in which F(z) signifies the Z-transform of the function f j • In most hydrologic 
cases f j = 0 , j < 0 so the bilateral transform reduces to the unilateral case. The moments of f j 

about the origin can be obtained from the Z-transform in the following manner: 

~ 

Mo = L ~ =F(z) Iz=! 
j=-~ 

(2.54) 
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~ d 
M = " J'f.. = -z-(F(z) I 

I .L.J J dz z=1 
J=-~ 

(2.55) 

(2.56) 

M3 = L j3fj = [-z- -z-( -z-F(z» ] Iz=1 ~ d{ d d } 
j=-~ dz dz dz 

(2.57) 

and so on. The moments of discrete functions can be obtained about any reference points. 
Consequently, the relationships of equations (2.31) and (2.33) hold. Likewise, the theorem of 
moments, derived for continuous functions, is also valid for discrete functions. It can be easily 
seen by noting the Z-transform of the convolution summation: 

which yields 

Equation (2.59) can be expressed as 

Y(z) =X(z)H(z) =H(z)X(z) 

Taking logarithm to the base e of equation (2.60), one gets 

In Y(z) = InX(z) + InH(z) 

Thus, in logarithmic domain the log of Y is a linear sum of the logs of X and H. 

2.2.3 INVERSION OF Z-TRANSFORM 

The inverse Z-transform can best be defined as 

Z-I [F(z)] = J, = -1-fF(Z)zj-ldz 
J 21ti 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

= L Residues o![F(z)zj-l] at the poles o!F(z) (2.62) 
poles 
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For a multiple pole of order m at z ::::: W, we get 

1 d m - I . 
The Residue::::: [---- {(z-w)m F(Z)ZJ-I} II _ 

(m-l)! dzm-I z-w 
(2.63) 

2.3 Method of Probability Weighted Moments 

Greenwood, et al.( 1979) introduced the method of probability weighted moments (PWM) and 
showed its usefulness in deriving explicit expressions for parameters of distributions whose 
inverse forms X:::::X (F) can be explicitly defined. They derived relations between parameters and 
PWMs for generalized lambda, Wakeby, Weibull, Gumbel, logistic and kappa distributions. 
Hosking (1986) developed the theory of probability weighted moments and applied to estimate 
parameters of several distributions. Landwehr et al. (1979a,b) developed inference procedures 
using PWMs. For flood frequency analysis, Haktanir (1996) modified the conventional method 
of probability-weighted moments for estimation of parameters of any distribution without the 
need to use a plotting position formula. Wang (1996) defined partial PWMs and derived them 
for extreme value type I and ill distributions. He applied these moments to lower bound censored 
samples. 

Let a probability distribution function be denoted as F=F(X)=P[X ,,; xl. The PWMs of 
this function can be defined as 

(2.64) 

where Mjj,k is the probability weighted moment of order (i, j, k), E is the expectation operator 
and i, j and k are real numbers. If j:::::k:::::O and i is a nonnegative integer thenMj.o,o represents the 
conventional moment about origin of order i. If M j•o.o exists and X is a continuous function of 
F, then M jj•k exists for all nonnegative real numbers j and k. 

For nonnegative integers j, k, we can express 
k 

MOk = L (k)(-l)jM. o (2.65a) 
I.. j=O J 'J, 

(2.65b) 

If Mj,O,k exists and X is a continuous function of F then M jj•o exists. When the inverse X:::::X (F) 
of the distribution F:::::F (X) cannot be analytically defined, it may in general be difficult to derive Mi. j. k 

analytically. 
When i,j, k are nonnegative integers, the probability weighted moment of order (i,j, k), M j ',k 

is proportional to E[x/+1j+k+d, the i-th moment about the origin of the (j+l)th order statistic for 
a sample of size n:::::k+j+ 1. Symbolically, 

(2.66a) 



where 0< denotes "proportional." Specifically, 

E[X/+!J+k+d =MjJiBU+l,k+l] 

where B[.,.] denotes the beta function. If j=O, then 

E[xik+!] = (k+ I) Mj.O,k 

25 

(2.66b) 

(2.67a) 

Here (k + 1) Mj,O.k represents the i -th moment about the origin of the first order statistic for a 
sample of size k+ 1. Likewise, if k=O, then 

(2.67b) 

where 0+ 1) Mk . 0 represents the i-th moment about the origin of the 0+ 1 )th order statistic for a 
J, 

sample of size j+ 1. We are usually interested in cases where j and k are positive integers. 
The expected value of the range of X in a sample of size n=k + 1 =j+ 1 can be written as 

(2.68) 

The PWMs can be derived for a distribution which can be expressed as X=X(F). These can then 
be related to the distribution parameters. The resulting relations may be of simpler structure than 
those between the conventional moments and the parameters. The simpler structure may be due 
in part to X being taken to only the first power. 

We normally work with the moments M . . k into which x enters linearly. In particular, 
I, J, 

what we refer to as PWM for hydrologic applications are defined as 

a r = M! 0 r = E [x { 1- F ( x) }'], r = 0,1,2, .......... (2.69a) 

br=M"r,o=E[x{F(x)}'], r=0,1,2, .............. (2.69b) 

Note that ak./= E [ x \:k ], and bk = E [ X k: k ] are expected values of extreme order statistics. 

In general, a, and be are functions of each other as 

(2.70a) 

(2.70b) 
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Therefore, 

ao =bo 

a l =bo -bl 

a2 =bo -2bl +b2 

aJ =bo -3bl +3b2 - bJ 

,bo = ao 

,bl=ao-al 
,b2 =ao -2a l +a 2 

,bJ =ao -3a l +3a 2 -a J 

(2.71) 

A complete set of the a or b probability-weighted moments characterizes a distribution. 

2.4 Methods of Mixed Moments 

Rao (1980, 1983) proposed a method of mixed moments (MIXM) for fitting log-Pearson type 
ill distribution. The MIXM method is applicable to any log-probability distribution. As the 
name suggests, the MIXM method is based on mixing the moments of real and logarithmically 
transformed data. Thus, only the first two moments (mean and variance) of the data are used. 
For example, if it is desired to fit the log-Pearson type (LP) ill distribution to a given set of data 
then its parameters can be estimated in two ways: (1) The first method uses the mean (x) and 
variance s; of real data and mean of logarithmically transformed values (y =log x). (2) the 
second method uses the mean of the real data (x) and the mean and variance s; of 
logarithmically transformed data (y=log x). Rao (1980) showed using Monte Carlo 
experimentation that the first method possessed superior statistical properties as compared to the 
second method. 

2.5 Method of L-Moments 

The method of L-moments was developed by Hosking (1986, 1990) and has since become quite 
popular for characterization of probability distributions, summarization of observed data samples, 
parameter estimation or fitting of probability distributions to data, interval estimation, and testing 
of hypotheses about distributional form. Hosking and Wallis (1991) extended the use of L­
moments and developed statistics for use in regional frequency analysis to measure discordancy, 
regional homogeneity, and goodness-of-fit. They (Hosking and Wallis, 1995) compared unbiased 
and plotting position estimators ofL moments. Vogel and Fennessey (1993) proposed replacing 
product moment diagrams by L-moment diagrams and used them to discriminate among alternate 
distributional hypotheses about daily streamflows in Massachusetts. L-moment diagrams have 
been employed by Hosking and Wallis (1987) for selecting the generalized extreme value (GEV) 
distribution over the gamma distribution for modeling annual maximum hourly rainfall data. 
Vogel, et al. (1993a) used them to show that flood flows at 383 sites in southwestern United 
States were equally well approximated by log-Pearson type 3 (LP3), lognormal 3 (LN3), and 
generalized extreme value (GEV) distributions. Vogel et al. (1993b) used them to show that 
flood flows were well represented by a GEV distribution in the region of Australia which 
received most rainfall during winter months and by a generalized Pareto (GPA) distribution in 
the regions of Australia which received most rainfall during summer months. Vogel and Wilson 
(1996) constructed L-moment diagrams for annual minimum, average, and maximum 
strearnflows at more than 1455 river basins in the United States. They then found that the 
genearlized extreme value (GEV), three-parameter lognormal (LN3) and log Pearson type ill (LP 
III) distributions provided good approximations to the distribution of annual maximum flood 
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flows. Bobee et al. (1993) discussed two kinds of moment ratio diagrams and their application 
in hydrology and stressed their need to choose between distributions. Rao and Hamed (1994) 
used L-moments for frequency analysis of upper Cauvery River annual maximum flow data in 
India. The 3-parameter lognomal and the generalized extreme value distributions were selected 
for the analysis as a result. L-moments are preferable to product moments for evaluating the 
power of alternative hypothesis tests for the normal distribution. Rao and Hamed (1997) applied 
L-moments to regional frequency analysis of Wabash River flood data. Wang (1997) developed 
a generalization ofL-moments, calledLH moments based on linear combinations of higher-order 
statistics. He introduced them to characterize the upper part of distributions and larger events in 
data. Thus use of these moments reduced undesirable influences that small sample events might 
have had on the estimation of large return periods. He formulated the method of LH moments 
for the generalized extreme value distribution. 

The probability-weighted moments characterize a distribution but are not meaningful by 
themselves. L-moments were developed by Hosking (1986) as functions ofPWMs which provide 
a descriptive summary of the location, scale, and shape of the probability distribution. L­
moments are analogous to ordinary moments and are expressed as linear combinations of order 
statistics. They can also be expressed by linear combinations of probability-weighted moments. 
Thus, the ordinary moments, the probability weighted moments and L-moments are related to 
each other. L-moments are known to have several important advantages over ordinary moments. 
L-moments have less bias than ordinary moments because they are always linear combinations 
of ranked observations. As an example, variance (second moment) and skewness (third moment) 
involve squaring and cubing of observations, respectively, which compel them to give greater 
weight to the observations far from the mean. As a result, they result in substantial bias and 
variance. 

If X is a real value ordered random variate of a sample of size n, such that 
xl:n :::; x2:n :::; ... :::; xn:n with cumulative distribution function F(x) and quantile function x(F), then the 
r-th L-moment of X (Hosking 1990) can be defined as a linear function of expected order 
statistics as: 

(2.72) 

where E{.} is the expectation of an order statistic and is equal to 

E{Xj:r} = .r! f x {F(x)y-l{I-F(x)},-jdF(x) 
(r-J)! (J)! 

(2.73) 

As noted by Hosking (1990), the natural estimatorofLr ' based on an observed sample of data, 
is a linear combination of the ordered data values, i.e., an L-statistic. Substituting equation (2.73) 
in equation (2.72), expanding the binomials ofF(x) and summing the coefficients of each power 
of F(x), one can write as 

• r 1 * L r =E[xPr_l(F(x))] = 10 x(F)Pr_1(F)dF, r=I,2, .... (2.74) 
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where P r' (F) is the r-th shifted Legendre polynomial expressed as 

(2.75) 

Equation (2.75) can simply be written as 

r 

P '(F) =" P F k r L.J r,k (2.76) 
koO 

and 

P = ( - 1 )'-k(r)(r+k) 
r,k k k (2.77) 

The shifted Legendre polynomials are related to the ordinary Legendre polynomialsP r(u) as 
Pr'(u) =P r(2u-1), and are orthogonal on the interval (0,1) with constant weight function. 

The first four L moments are 

LI =E(x) = fXdF (2.78) 

L2 = ~E(X2:2 - xu) = f x(2F -1 )dF (2.79) 

L3 =iE(X3:3 -2x2:3 + x\:3) = fx(6F2 -6F + l)dF (2.80) 

L4 =~E(X4:4 - 3X3:4 + 3X2:4 -XI :4) = fx(20F3 -30F2 + 12F -l)dF (2.81) 

Perhaps the simplest way to define L moments is through the use of the probability­
weighted moments (PWMs). L-moments are linear functions of PWMs (Hosking, 1990) 
discussed in the previous section. Greenwood et al. (1979) defined PWM's, Mq,r,s ' as 

M =E[(x(F»q {1-x(F)}'{F(x)}1 
q,r,s 

(2.82) 

With q=l and s=O, 

MI o=b = (lx(F)FrdF 
,r, r Jo 

(2.83) 

With q=l and r=0, 
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M =a =r 1x(F)(1-F)'dF 
1,0" 'Jo 

(2.84) 

Both a, and br are linear in x and are related to each other as 

(2.85) 

(2.86) 

When r=0, b o is the mean. All higher-order PWMs are simply linear combinations of the order 
statistics x(n) ~x(n_1) ~ .... ~x(l). 

Unbiased sample estimates of PWMs for any distribution can be computed as 

(2.87) 

where xU) represents the ordered data, with X(I) being the largest observation and x(.) the smallest. 
L-moments, L r +1 , can be expressed in terms of PWM's, a r andbr ' as 

r r 

Lr+l = (-lYL Pr,kak = L Pr,kbk 
k=O k=O 

In particular, 

The sample PWM's can be calculated from plotting positions as 

1 n 
a = - L (l-P. )r x. 

r n i=l r:n I 

(2.88) 

(2.89) 

(2.90) 

(2.91) 

(2.93) 

(2.94) 
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where Pion is obtained from a plotting position. The use of Pion = (i-0.35)/n usually gives good 
results (Cunnane 1989). 

The first L-moment is equal to the mean f.1 and is hence a measure of location. Other L­
moments are measures of the scale and of the shape of a probability distribution. Analogous to 
the conventional moment ratios, Hosking (1990) defined L-moment ratios, R, as 

L2 
R =-=L-C 

2 L v 
I 

Lr 
R =- r~3 

r L' 
2 

(2.95) 

(2.96) 

where R2 is a measure of scale or dispersion, called L - C v' R3 is L-skewness, and R4 is L­
kurtosis. Thus, R2, R3 ' and R4 can be thought of as measures of a distribution's scale, skewness, 
and kurtosis, respectively. The ratios R.. are independent of the units of measurement. 

2.6 Method of Maximum Likelihood Estimation 

The method of maximum likelihood (ML) estimation is widely accepted as one of the most 
powerful parameter estimation methods. Asymptotically, ML parameter estimates are unbiased, 
minimum variance, and normally distributed, while in some cases these properties hold for small 
samples. The MLE method has been extensively used for estimating parameters of frequency 
distributions as well as fitting conceptual models. Douglas et al. (1976) used likelihood functions 
to fit conceptual models with more than one dependent variable. Sorooshian et al. (1983) 
evaluated ML parameter estimation techniques for conceptual rainfall-runoff models and 
evaluated the influence of data varaibility and length on model credibility. Gupta and Sorooshian 
(1985) discussed the relationship between data used for hydrologic model calibration and the 
precision of model parameters estimated by the maximum likelihood approach. Rao and Mao 
(1987) investigated instrumental variable-approximate maximum likelihood method for 
modeling and forecasting daily flows. This method eliminates bias in parameter estimates. Duan 
et al. (1988) developed an MLE criterion suitable for conceptual model calibration using data 
which are recorded at unequal time intervals and which contain autocorrelated errors. Clarke 
(1996) developed residual maximum likelihood (REML) methods for analyzing hydrological data 
series and applied them to estimate mean areal monthly rainfall in Amazonia, using incomplete 
records from 48 raingage sites, as well as to analyze annual flood data from 19 flow gaging sites 
in sub-basins of a large river system in southern Brazil. REML is useful for analysis of 
hydrological data sets with records of varying lengths, intersite correlations and year-to-year 
effects. Kitanidis and Lane (1985) applied the MLE method to estimate hydrologic spatial 
processes. 

The use of MLE is even more extensive in flood frequency analysis. Dubey (1967) 
applied MLE method to estimate shape parameter of the Weibull distribution. Cohen and 
Whitten (1982) modified the ML method for 3-parameter Weibull distribution. Kappenman 
(1985) estimated parameters of three-parameter Weibull, lognormal, and gamma distributions 
using the ML method. Kline and Bender (1990) estimated parameters of shifted Weibull and 
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lognormal distributions. Phien and Jivajirajah (1984) compared the method of moments and 
MLE for fitting the four-parameter Johson SB curve. Hosking (1985) proposed a correction for 
the bias of ML estimators of Gumbel parameters. Koch (1991) investigated bias error in 
maximum likelihood estimation. 

Let f(x;a\ ,a2 , •••• ,am ) be a probability density function (pdf) of the random variable X 
with parameters a j , i=l, 2, ... , m, to be estimated. For a random sample of data, x j ,x2 ' ..... xn ' 

drawn from this probability density, the joint pdf is defined as 

n 

f( Xj ,x2 ,x3 ' ••• xn; a\ ,a2 , ••• am ) = 1t f(x j ;a\ ,a\, ... am ) 
j=\ 

(2.97) 

Interpreted conceptually, the probability of obtaining a given value of X, say Xl' is proportional 
to f(x; a\ ,a\ , ... ,am). Likewise, the probability of obtaining the random sample x\ ,x2 ' ""xn from 
the population of X is proportional to the product of the individual probability densities or the 
joint pdf. This joint pdf is called the likelihood function, denoted by L, 

n 

L = 1tf(x\ ;a\ ,az , ... am ) 
j=\ 

where the parameters al'i=I,2, ... m, are unknown. 

(2.98) 

By maximizing the likelihood that the sample under consideration is the one that would 
be obtained if n random observations were selected fromfix;a\,az, ... am)' the unknown 
parameters are determined, and hence the name the method of maximum likelihood estimation 
(MLE). The values of parameters so obtained are known as MLE estimators. Since the 
logarithm of L (In L) attains its maximum for the same values of a\ ,i = I ,2, ... ,m, as does L, the 
MLE function can also be expressed as 

n n 
InL = L * = In 1t fix\ ;a\ ,a2, ... ,am) = L Infix\ ;a\ ,a2 , .. ·am) (2.99) 

j=\ j=\ 

Frequently In [L] is maximized, for it is many times easier to find the maximum of the logarithm 
of the maximum likelihood function than that of the normal L. 

The procedure for estimating the parameters or determining the point where the MLE 
function achieves its maximum involves differentiating L or In L partially with respect to each 
parameter and equating each differential to zero. This results in as many equations as the number 
unknown parameters. For m unknown parameters, we get 

aL(al'a2,· .. am) = 0 

aa\ 

aL(al'a2,· .. am) =0 

aaz 

aL(al'a2,· .. am) = 0 

aam 

(2.100) 
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These m equations in m unknowns are then solved for the m unknown parameters. 

2.7 Method of Least Squares 

The method of least squares (MOLS) is one of the most frequently used parameter estimation 
methods in hydrology. Natale and Todini (1974) presented a constrained MOLS forlinear models 
in hydrology. Williams and Yeh (1983) described MOLS and its variants for use in rainfall­
runoff models. Jones ( 1971) linearized weight factors for least squares (LS) fitting. Shrader et 
al. (1981) deveoped a mixed-mode version of MOLS and applied it to estimate parameters of 
log-normal distribution. Snyder (1972) repoted on fitting of distribution functions by non-linear 
least squares. Stedinger and Tasker (1985) performed regional hydrologic analysis using 
ordinary, weighted and generalized least squares. 

Let there be a function y = j(x;al'a2, •.. ,am) where a;,i = 1,2, ... ,m, are parameters to be 
estimated. The method of least squares (MOLS) involves estimating parameters by minimizing 
the sum of squares of all deviations between observed and computed values of y. 
Mathematically, this sum S can be expressed as 

n n 

s= L d l
2 = L [yo(i) _y/O]2 

;=1 ;=1 

n 

= L [YJO -j(x;al'a2,···,am)]2 
;=1 

(2.101) 

where Yo ( i) is the i-th observed value of Y, y c ( i) is the i-th computed value of Y, and n>m 
is the number of observations. The minimum of S in equation (2.101) can be obtained by 
differentiating S partially with respect to each parameter and equating each differential to zero: 

n 

a L [YoU) - j(x;;al,a2,···am)]2 
;=1 =0 

aa l 

n 

a L [yo(i) - j(x j ;a l,a2,···am)]2 
;=1 =0 (2.102) 

aa2 

n 

a L [yo(i) - j(x;;al ,a2,···,am)]2 
;=1 =0 

aam 

Thus, m equations, usually called the normal equations, are obtained, which are then solved for 
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estimation of m parameters. 

2.7.1 MATRIX REPRESENTATION OF MOLS 

Many of the computations performed in fitting multiple variable models to observed data can be 
expressed more efficiently using the matrix notation. The normal equations in MOLS can often 
be reduced to the form 

XA=y (2.lO3) 

where X is a matrix of (n+ 1, m+ 1) dimensions, A is a vector of the parameters having (m+ 1,1) 
dimensions, and Y is a vector having (n+ 1,1) dimensions. In this section the upper case letters 
will signify matrices or vectors. The deviations between observed and computed values of y can 
be written as 

D=Y-XA (2.104) 

where D is a vector of deviations d.,i= 1,2, .. ,n, between observed and computed values. 
The sum of squares of devi~tions can be obtained by using the inner product which is 

obtained by multiplying D by its transpose D T: 

L d;2=DTD 

=[yT -A TXT][y-XA] (2.lO5) 

= yTy _ yTXA -A TX Ty +A TX TXA 

Since superscript T signifies the transpose, where A and Y are column vectors their transposes 
will be row vectors. Thus, the second and third terms on the right side of equation (2.105) will 
be scalar in form. Since a scalar and its transpose are the same, we get 

(2.106) 

Differentiating equation (2.106) with respect to A and equating to zero, we obtain 

(2.lO7) 

The matrix [X TX] and the vector [X TY] are calculated from observed values of the variates. The 
parameters can then be determined as 

(2.108) 

Equations (2.108) expresses in compact form the least squares solution. 
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2.8 Comparison with Entropy Method 

It may be useful to briefly compare the POME method of parameter estimation with the method 
of moments (MOM) and method of maximum likelihood estimation (MLE), two of the most 
frequently used methods. To contrast the POME method with the MLE method, we consider the 
case of a general pdf f (x; 8) where 8 represents a family of parameters AI' i = 1 ,2, ... ,M. In the 
MLE method we construct the likelihood function L 

N 

L = 1t f(x;; 8) 
;=1 

(2.109) 

and maximize either L or In L. Here N is the sample size. Taking logarithm of (2.109) 

N 

InL = L Inf(x;; 8) 
;=1 

(2.110) 

By differentiating In L with respect to each of the parameters A; separately and equating to zero, 
we guarantee as many equations as the number of parameters. We solve these equations to obtain 
parameter estimates. 

If, however, we multiply (2.110) by -( lIN) then 

liN N 1 
--lnL=--L Inf(x;8)=-L -.f(x.;8) 

N N ;=1 ;=1 N I 

(2.111) 

Recall that 

N N 

/[f] = - L.f(x;;8) Inf(x:8); L fix;; 8) = 1 (2.112) 
;=1 ;=1 

On comparing equation (2.111) with equation (2.112) it is seen that 

1 
/[f] = --lnL 

N 
(2.113) 

provided In f (x; ; 8) is uniformly weighted over the entire sample. The POME method involves 
population expectations, whereas the MLE method involves sample averages. If population is 
replaced by a sample then the two methods would yield the same parameter estimates. To fully 
appreciate the signifance of equation (2.113), we consider the case of an exponential distribution 

f(x) = a exp ( -ax) (2.114) 



Then 

N 

I[f] = - L a exp (-ax) In [a exp (-ax i)) 

k=1 

= -In a + a E[x] 

By maximizing I[f] with respect to ex 

a = lIE[x] 

On the other hand, the log-likelihood function for the exponential distribution is 

N 

In L = N In a - a L Xi 
i=1 

By maximizing In L of equation (2.117a), we get 

N 

a = I/[L x/N] = l!x 
i=1 
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(2.115) 

(2.116) 

(2. 117a) 

(2. 117b) 

The difference in the two estimates of ex given by equations (2.116) and (2.117) is that the POME 
method uses the expectation of X or the population mean, whereas the MLE method uses the 
average of X or sample mean. 

This result can be extended to a very general case of f (x), written as 

m 

f(x) = A x k exp [- L A.i yi(x)] 
i=1 

The Shannon entropy functional (SEF) of this function is 

m N 
I[f] -InA -k E[lnx] + L A.i L E[Yi(xj )] 

i=1 j=1 

On the other hand, the log-likelihood function of equation (2.118) is 

N m 

InL = L In[A x/ exp[ -L A.i yi(xj )]] 

i=1 j=1 

N N N m 

= L In A +k L In Xi - L 1..1 L Yi (X) 
i=1 i=1 i=1 j=1 

(2.118) 

(2.119) 

(2.120) 
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Multiplying equation (2.120) by -(1IN) throughout, we get 

-1. L 
N 

N In x; 
-In A-k L 

;=\ N 

_ f. A; ~ 
~ ~ y;(x) 
;=\ N j=\ 

(2.121) 

Equation (2.119) is the same as equation (2.121) if E [.J terms are replaced by corresponding 
averages. 

To compare the POME method with MOM is not straightforward anf requires further 
research. The MOM is not variational in character, whereas the POME method is. If the 
constraints in the entropy method are ordinary moments then the parameter estimates by the two 
methods would be the same. This is, for example, true in the case of exponential and normal 
distributions. If the constraints are other than ordinary moments which is true of most 
distributions then the two methods would likely be expected to yield different parameter 
estimates and it is not known what conditions, if any, would there be for differences in the 
parameter estimates to vanish. 

2.9 Problems of Parameter Estimation 

We estimate parameters of a distribution function from sample values. There are, of course, 
myriad ways by which to obtain parameter estimates. The sample data may contain errors, the 
hypotheses underlying the method of parameter estimation may not yield accurate estimates, and 
there may be truncation and roundoff errors. These sources of errors may result in errors in 
parameter estimates. Each estimate of a parameter is a function of sample values which are 
observations of a random variable. Thus, the parameter estimate itself is a random variable having 
its own sampling distribution. An estimate obtained from a given set of values can be regarded 
as an observed value of the random variable. Thus, the goodness of an estimate can be judged 
from its distribution. A question then arises: How should we best use the data to form estimates? 
This immediately raises another question: What do we mean by the best estimates? Also, are 
these estimates unique? How do we select the best parameter estimator ifthere is one? A number 
of statistical properties are available by which to address the above questions. Troutman (1985a, 
b) investigated errors and their sources in complex conceptual rainfall-runoff models. By treating 
errors as random variables and defining the probabilistic structure of the errors he estimated bias 
in parameter estimates and related it to model error and input error. Kitanidis (1986) estimated 
parameter uncertainty in estimation of spatial functions using Bayesian analysis. Field (1985) 
described the concept of robustness. Kuczera (1982a, b, c) applied this concept to parameter 
estimation for conceptual catchment models. In a series of papers, Fiering (1982a, b, c,d) 
investigated and theorized a similar concept, called resilience. Excellent discussions on 
parameter uncertainty, errors, robustness, bias, resilience and the like have been reported by 
Kuczera (1982a,b,c, 1983a,1983b), Sorooshian and Gupta (1983), Gupta and Sorooshian (1983) 
among others. 

2.9.1 BIAS 

Let the parameter be a and its estimate ac . The estimate a c is called an unbiased estimate of a 
if E (a c) = a. In general, an estimate will have a certain bias b( a) depending on a so that 
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E(ac) =a +b(a) (2.122) 

Obviously, b(a)=O for an unbiased estimate. It should, however, be noted that an individual a c 
is not equal to or even close to a even if b(a)=O. It simply implies that the average of many 
independent estimates of a will be equal to a. 

The bias in a given quantity is usually measured in dimensionless terms and is often 
referred to as standardized bias (or BIAS). Thus, BIAS is defined as 

E (a) - a 
BfA S = ----'----'-­

a 
(2.123) 

where a is an estimate of parameter or quantile of a. In Monte Carlo experimentation, large 
numbers of samples of different sizes are generated from a given population. For each sample, 
then, an estimate of a is obtained. If there are, say, 1000 samples of a given size generated then 
there are 1000 values of parameter or quantile a. Thus, E(a) is the average of the 1000 estimates 
of a for a given sample size and is estimated as 

• La; 
E(a)=~. (2.124) 

n 

where n is the number of samples generated or number of values of the a estimate. The value of 
a in equation (2.123) is the true value of a or the value of parameter a of the population. 

2.9.2 CONSISTENCY 

Let there be a sample be of size n. The estimate ac is called a consistent estimate of a if it 
converges to a with probability one as n tends to infinity. Because many unbiased estimates have 
variances of the type 

Var(a ),. C/(n)O.5 
c (2.125) 

the condition of consistency is satisfied in most cases. Here C is constant. What is, however, 
desirable in practice is to have Var (a c ) as small as possible. This would imply that the 
probability density function of a c would be more concentrated about a. 

2.9.3 EFFICIENCY 

An estimate ac of ajs said to be efficient if it is unbiased and its variance is at least as small as 
that of any other unbiased estimate of a. If there are two estimates of a, say at and a2, then the 
relative efficiency of at with respect to a2 is defined as 

E[at -a]2 
e= :d 

E[a2 -af 
(2.126) 



38 

if E[a2 -af>E[at - a]2, then e s; 1. An efficient estimate has e=l. If an efficient estimate exists, 
it may be approximately obtained by use of the MLE or entropy method. 

2.9.4 SUFFICIENCY 

An estimate a c of a is said to be sufficient if it uses all of the information that is contained in the 
sample. More precisely, let at and a2 be two independent estimates of a. at is considered a 
sufficient estimate if the joint probability distribution of at and a2 has the property 

(2.127) 

in which f( a 1 ) is the distribution of at ,j(a21 at) is the conditional distribution of a2 given at, 
and K(xt ,x2""X) is not a function of a but only of Xi'S. If equation (2.127) holds, then a2 does 
not produce any new information about a which is not already contained in at. In this case at 
is a sufficient estimate. 

2.9.5 RESILIENCE 

The concept of resilience (Fiering, 1982a, b, c, d ) is analogous to the statistical notion of 
robustness, meaning that even if an unlikely event occurs, the decision has a high probability of 
being correct or at least good enough. Another approach to resilience and robustness is based on 
partial and total derivatives of the system response. The partial derivative of system reponse with 
respect to a decision variable measures the sensitivity of response to that variable alone, all other 
decision variables being held constant. If the partial derivative is small, the system is robust with 
respect to such changes. If the partial derivative is not small, the system response need not change 
significantly because changes in other decision variables might accommodate unanticipated 
change in the dependence of responsc on that '. ,;able. The total derivative is constituted by the 
sum of the products of partial derivatives of system response to decision variables and total 
derivatives of operating decisions with respect to decision variablcs. Thus, this is a measure of 
the system's ability to adjust, to utilize redundant capabilities or a measure of resilience of the 
given system design. 

2.9.6 STANDARD ERROR 

Another dimensionless performance measure frequently used in hydrology is the standard error 
(SE), defined as 

u(a) 
SE=-­

a 

where 0 (.) denotes the standard deviation of a and is computed as 

(2.128) 

(2.129) 

where the summations are over n estimates a of a. In Monte carlo experiments, referred to 



above, for each sample size, a value of SE is obtained. Thus this measure is similar to the 
coefficient of variation. 

2.9.7 ROOT MEAN SQUARE ERROR 

The root mean square error (RMSE) is one of the most frequently employed performances 
measures. and is defined as 

E [( Q - a) 2 t2 
R M S E = ---"-'----'----''--­

a 
(2.130) 

where E[.] is the expectation of [.]. It can be shown that RMSE is related to BIAS and SE as 

2.9.8 ROBUSTNESS 

n -1 
RMSE =[-- SE 2 + BIAS2 t2 

n 
(2.131) 
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Kuczera (1982a, b, c) defined a robust estimator as the one that is resistant and efficient over a 
wide range of population fluctuations. Two criteria for resistant estimator are mini-max and 
minimum average RMSE. According to the mini-max criteria, the maximum RMSE for all 
population cases should be minimum .. Thus, for a resistant estimator the average RMSE as 
well as the maximum RMSE should be minimum. 

2 .. 9.9 RELATIVE MEAN ERROR 

Another measure of error in assessing the goodness of fit of hydrologic models is the relative 
mean error (RME) defined as 

(2.232) 

in which N is sample size, Q is observed quantity of a given probability and Q c is computed 
quantity of the same probability. Also used sometimes is the relative absolute error defined as 

(2.233) 
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CHAPTER 3 

UNIFORM DISTRIBUTION 

Uniform distribution is the simplest statistical distribution. Although there is hardly any 
hydrologic variable that follows a uniform probability distribution, it is invoked in a variety of 
applications. For example, in Bayesian statistical modeling in hydrology it is frequently used as 
a prior distribution. In systems hydrology, uniform distribution is the pulse function obtained 
by subtracting two step functions lagged by the length of the uniform distribution. The pulse 
function is a key to deriving the unit hydro graph theory. The instantaneous unit hydrograph of 
the rational method, used in urban hydrology, is a uniform distribution (Singh, 1988). Of all the 
statistical distributions, uniform distribution has the highest entropy. In river morphology, when 
a river approaches equilibrium or dynamic equilibrium, its characteristics tend to follow a 
uniform distribution. Under equilibrium, rivers follow the minimum rate of energy dissipation. 
Furthermore, a river constantly adjusts its cross-sectional geometry and longitudinal profile to 
accommodate the influx of water and sediment coming from its drainage basin, and this 
adjustment is in accordance with the principle of maximum entropy. Thus, there is a close link 
between equilibrium and uniform distribution and then between maximum entropy (uniform 
distribution) and minimum rate of energy dissipation. This link plays a fundamental role in river 
engineering and training works, river morphology, evolution of deltas, etc. 

A random variable X is defined to have a uniform distribution if its probability density 
function (pdf) is given by 

1 f(x) =-- ,a5.x5.b 
b-a 

(3.1) 

Equation (3.1) can also be expressed in terms of the unit step function or Heavyside function, 
ut (x), as 

1 fix) = - [u t (x-a) - ut(x-b)] 
b-a 

(3.2) 

By definition f(x) is a rectangular pulse of length (b-a) and height l/(b-a). The cumulative 
distribution function (cdf) of the uniform distribution can be expressed as 

x-a 
F(x)=­

b-a 
(3.3) 
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The uniform distribution does not have any parameter, for once one bound is known the other 
bound is fixed by virtue of the rectangularity of the distribution. Thus, the parameter estimation 
in this case is trivial. Nevertheless it is didactic to apply the entropy method. 

3.1 Specification of Constraint 

Taking logarithm of equation (3.1) to the base 'e', one gets 

Infix) = -In(b-a) (3.4) 

Multiplying equation (3.3) by [-f(x)] and integrating between a and b, one gets 

(3.5) 

Following Singh et al. (1985,1986), the constraint appropriate for equation (3.1) can be written 
as 

(3.6) 

which is the total probability law. 

3.2 Construction of Zeroth Lagrange Multiplier 

The least-biased pdf consistent with equation (3.6), determined by the principle of maximum 
entropy (POME), takes the form: 

f(x) =exp( -Ao) (3.7) 

where Ao is the Lagrange multiplier. 
Substitution of equation (3.7) in equation (3.6) yields 

(3.8) 

or 

(3.9) 



which is the partition function. 
The zeroth Lagrange multiplier Ao is given by equation (3.9) as 

Inserting equation (3.9) into equation (3.7), the result is 

which is the same as equation (3.1). 

1 f(x)=-
b-a 

3.3 Estimation of Parameter 
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(3.10) 

(3.11) 

The uniform distribution is a none-parameter distribution. If the lower bound of X is known, the 
upper unknown parameter b is estimated such that 

b 

f~=1 b-a 
a 

If the lower limit of X, a, is zero, then 

rbdx =1 
Jo b 

(3.12) 

(3.13) 

The quantity lib specifies the height or intensity of the rectangular pulse over the interval (0, b). 

3.4 Distribution Entropy 

The entropy, I(x), of the uniform distribution can be expressed as 

lex) = -{b f(x) Inflx)dx = In(b-a) (3.14) 

For a continuous random variable bounded by a finite interval, the uniform probability density 
provides the maximum entropy. 
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CHAPTER 4 

EXPONENTIAL DISTRffiUTION 

The exponential distribution is a basic distribution for constructing a number of other 
distributions. For example, the gamma distribution is obtained from the distribution of the sum 
of random variables where each variable follows an exponential distribution. Indeed, it is the 
simplest member of the gamma family of distributions and can be considered as a special case 
of the two-parameter gamma distribution. It is a one-parameter distribution and has found 
widespread application in hydrology and water resources. The instantaneous unit hydrograph of 
a linear reservoir, frequently used in systems hydrology, is exponential (Singh, 1988). The 
exponential distribution is often used for frequency analysis of rainfall depth, intensity and 
duration, and number of rainfall events (Eagleson, 1982). It is frequently used in biology, 
genetics, quantum mechanics, reliability engineering, to name but a few. 

A random variable X is defined to have an exponential distribution if its probability 
density function (pdf) is given by 

f (x) = a exp (-ax), a> 0, x > 0 (4.1) 

where a is a parameter. The exponential distribution is a one-parameter distribution. Sometimes 
equation (4.1) is also referred to as negative exponential distribution. Its cumulative distribution 
function (cdf) can be expressed as 

F (x) = 1 - exp (-ax) 

The inverse form of equation (4.2a) is given as 

1 
x = --In(1- F) 

a 

4.1 Ordinary Entropy Method 

4.1.1 SPECIFICATION OF CONSTRAINTS 

Taking logarithm of equation (4.1) to the base 'e', one obtains 

In f(x) = In a - ax 

(4.2a) 

(4.2b) 

(4.3a) 
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Multiplying equation (4.3a) by [-f(x)] and integrating between 0 and 00, one gets 

- fo~f(x)lnf(x)dx = -Ina fo~f(x)dx + a fo~ xf(x)dx (4.3b) 

Following Singh et al. (1985, 1986), the equations of constraints appropriate for equation (4.1) 
can be obtained from equation (4.3b) as: 

(4.4) 

fo~ x f(x) dx = x (4.5) 

where x is the mean or the first moment of the distribution about its origin. 

4.1.2 CONSTRUCTION OF ZEROTH LAGRANGE MULTIPLIER 

The least-biased pdf corresponding to the principle of maximum entropy (POME) and consistent 
with equations (4.4) and (4.5) takes the form: 

(4.6) 

where Ao and Al are Lagrange multipliers. Substitution of equation (4.6) in equation (4.4) yields 

or 

(4.7) 

Equation (4.7) defines the partition function for the exponential distribution. The zeroth Lagrange 
multiplier Ao is given as 

(4.8) 

From equation (4.7) we also get the zeroth Lagrange multiplier as 

(4.9) 
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4.1.3 RELATION BETWEEN LAGRANGE MULTIPLIERS AND CONSTRAINTS 

Differentiating equation (4.8) with respect to (w.r.t.) AI' one gets 

aAo 1 
~=-~ 

(4.10) 

Differentiating equation (4.10) with respect to A1 , one obtains 

BAo Jo~ x exp (- AIX) dx 

BAt Jo~ exp (- AIX) dx 

- r~xexp(-A -Ax)dx 
10 0 I 

(4.11) 

- fo~ x f(x) dx = - x 

Equating equations (4; 10) and (4.11) the result is 

_ 1 - x or x = -
Al 

(4.12) 

4.1.4 RELATION BETWEEN LAGRANGE MULTIPLIERS AND PARAMETER 

Substitution of equation (4.8) in equation (4.6) yields 

(4.13) 

Comparing equation (4.13) with equation (4.1), one gets 

(4.14) 

4.1.5 RELATION BETWEEN PARAMETER AND CONSTRAINT 

With use of equation (4.12), we obtain 

1 a=-x (4.15) 

Equation (4.14) shows that parameter a of the exponential distribution is related to the Lagrange 
multiplier Al and equation (4.15) shows that the distribution parameter, in tum, is related to the 
constraint of equation (4.5). Thus, parameter a is found to be the inverse of the mean of X. 
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4.1.6 DISTRffiUTION ENTROPY 

The entropy value of the exponential distribution is obtained by inserting equation (4.1) in the 
definition of entropy: 

lex) = - foOO aexp( -ax)In[aexp( -ax)]dx= -Ina +ax (4.16) 

Because x = 11 a , 

lex) = -'In a + 1 = In (xe) (4.17) 

4.2 Parameter-Space Expansion Method 

4.2.1 SPECIFICA nON OF CONSTRAINTS 

Following Singh and Rajagopal (1986), the constraints for this method are specified by equation 
(4.4) and 

foOO (ax)f(x)dx = E[ax] (4.18) 

4.2.2 DERIV A nON OF ENTROPY FUNCTION 

The pdf corresponding to POME and consistent with equations (4.4) and (4.18) takes the form 

(4.19) 

where Ao and AI are Lagrange multipliers. Insertion of equation (4.19) in equation (4.4) leads to 

exp(Ao) = fooo exp (-Atax)dx 

1 

aAt 

(4.20) 

which is the partition function. From equation (4.20), the zeroth Lagrange multiplier is expressed 
as 

Ao = - In a - In AI (4.21) 

Substitution of equation (4.21) in equation (4.19) yields 

f(x) = a AI exp (- AI ax) (4.22) 

A comparison with equation (4.1) shows that AI = l. 
Taking a logarithm of equation (4.22) and multiplying by minus one, one gets 



-In f(x) = -In a - In Al + Al ax 

Using equation (4.23), the entropy function takes the form 

l(t) = -In a -In Al + Al E[ax] 
where E denotes the expectation operator. 

4.2.3 RELA nON BETWEEN PARAMETER AND CONSTRAINT 
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(4.23) 

(4.24) 

Taking the partial derivative of equation (4.24) with respect to a and Al separately, and equating 
each derivative to zero, one obtains 

~ = 0 aa 

1 
- - + E[ax] 

Al 

1 
- - + Al E[x] 

a 

Solution of equations (4.25) and (4.26) leads to: 

E[x] 
1 

a 

(4.25) 

(4.26) 

(4.27) 

which is the parameter estimation equation. This is the same result as obtained earlier. 

4.3 Other Methods of Parameter Estimation 

Other popular methods of parameter estimation are the methods of moments, maximum 
likelihood estimation, probability-weighted moments, L-moments, and least squares. In the case 
of exponential distribution all methods lead to the same parameter estimate. 

4.3.1 METHOD OF MOMENTS 

Since equation (4.1) has one parameter, taking one moment of f(x) will suffice. To that end, 

(4.28) 

a 

where MI is the first moment off(x) about the origin. Because Mllfix)] =E[x] =x, we obtain 

1 
a== 

x 
(4.29) 
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which is the same as equation (4.27). 

4.3.2 METHOD OF MAXIMUM LIKELllIOOD ESTIMA nON 

The likelihood function for a sample of size N drawn from an exponential population given by 
equation (4.1) can be written as 

N N 
L= 1t f(x)= 1t aN exp (-ax) 

i=\ i=\ 

Taking logarithm of equation (4.30), one gets 

N 

InL = NIna - a L xi 
i=\ 

(4.30) 

(4.31) 

Differentiating equation (4.31) with respect to a and equating the derivative to zero, one obtains 

This yields 

N a InL _ N _" = 0 
LXi 

aa a i=\ 

1 
a== 

x 

which is the same as equation (4.29). 

4.3.3 METHOD OF PROBABILITY-WEIGHTED MOMENTS 

(4.32) 

(4.33) 

The probability-weighted moment of order (1,0,0) or zero order, Wo, is calculated as 

which yields 

\ 1 \ 
W 0 = J x dF = - - J In (1- F )dF 

o a 0 

1 W =-o a 

But Wo = x . Therefore, a = 11 x, which is the same as equation (4.29). 

(4.34) 

(4.35) 
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4.3.4 METHOD OF L-MOMENTS 

For the exponential distribution, the first L-moment, LI , is the same as Wo given by equation 
(4.35). Therefore, 

1 L=-] a 

But L] = E [x] = x . Thus, a = 1/ x , which is the same as equation (4.29). 
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CHAPTERS 

NORMAL DISTRIBUTION 

The normal distribution is probably the most popular statistical distribution. It is also known as 
the Gaussian distribution or error function. Many statistical parameters are found to be 
approximately normally distributed; therefore, the normal distribution is often used for statistical 
inferences. A variety of natural phenomena either approximately follow a normal distribution 
or can be transformed to follow a normal distribution. One of the earliest applications of the 
normal distribution in hydrology was made by Hazen (1914), who introduced the normal 
probability paper for ananlysis of hydrologic data. Markovic (196S) fitted the normal distribution 
to annual rainfall and runoff data. Slack et al. (197S) showed that when the information about 
the distribution of floods and economic losses associated with the design of flood retardation 
structures was lacking, it was better to use the normal distribution than other distributions such 
as extreme value, lognormal, Weibull, etc. The other advantages of the normal distribution are 
that it is extensively tabulated and the standardized normal variate is the same as the frequency 
factor. 

A random variable X is defined to have a normal distribution if its probability density 

1 (x-a)2 
f(x) = -- exp [---] 

b.fi1i 2b 2 
(S.la) 

function (pdf) is given by 
satisfying - 00 < x < 00 and b2 > O. Here a and b are parameters which turn out to be the mean and 
standard deviation of the distribution. The cumulative distribution function (cdt) is given as 

Jx 1 (x-a)2 
F(x)= ~exp[- 2 ]dx=<Il(x;a,b) (S.la) 

_b",2n 2b 

If the variable X is normalized as u = (x-a)/b, then equation (S.la) becomes 

1 U2 

f (u)= &exp(-T) (S.2a) 

which is known as the standard normal distribution or error function. The variable u is known 
as the standard normal variate. Equation (S.2a) can be numerically approximated (Abramowitz 
and Stegun, 1965) as 

V. P. Singh, Entropy-Based Parameter Estimation in Hydrology
© Springer Science+Business Media Dordrecht 1998



where u varies between 0 and infmity, and 

bo = 2.S0S2367 
b6 = 0.1306469 

b2 = 1.2831204 
bs = -0.0202490 

b4 = 0.2264718 
blO = 0.0039132 
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The error in approximation of equation (S.2a) by equation (S.2b) is less than 2.3 xlO-4. Note that 
feu) is an even funetion so that feu) = f(-u). 

The edf of u, F(u), is given as 

u 1 
F(u)= L .J2n exp(-t 2 /2)dt (S.2e) 

Note that F (-u) = 1 - F (u). Equation (S.2c) can be numerically be approximated (Abramowitz 
and Stegun, 1965) as 

where q = 11[1 +p u], p = 0.2316419, 0 :s u :s 00, and 

b l = 0.319381S30 
b4 = - 1.8212SS978 

b2 = -0.3S6S63782 
bs= 1.330274429 

(S.2d) 

b3 = 1.781477937 

The error in approximation of equation (S.2e) by equation (S.2d) is less than 7.S xlO-s . 

5.1 Ordinary Entropy Method 

S.I.1 SPECIFICATION OF CONSTRAlNTS 

Taking logarithm of equation (S.I) to the base 'e', one gets 

or 

(x a)2 
In (x) = -lnv'21t -lnb----

2b 2 

x 2 a 2 2ax 
In/(x) = -In v'21t-Inb---- +-

2b 2 2b 2 2b 2 

Multiplying equation (S.3a) by [-f(x)] and integrating between - 00 to 00, one gets 

(S.3a) 
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- 2 -

I(X)=-lf(X) lnf(x)dx = [In.J2iC +lnb+ 2
a
b2 ]If(X)dX + 

1 - -
+ 2b 2 l X2 f (x)dx- ba2 l x f (x)dx 

(5.3b) 

From equation (5.3b), the constraints appropriate for equation (5.1 a) can be written (Singh et al., 
1985) as 

r: f(x) dx = 1 (5.4) 

r: x f(x) dx = E[x] = x (5.5) 

(5.6) 

where; is the mean and s; is the variance ofx. 

5.1.2 CONSTRUCTION OF ZEROTH LAGRANGE MULTIPLIER 

The least-biased probability density function f(x) consistent with equations (5.4) to (5.6) and 
based on the principle of maximum entropy (POME) takes the form (Singh et al., 1985, 1986): 

f(x) = exp (- Ao - Al X - A2 x2) (5.7) 

where Ao, Al and A2 are Lagrange multipliers. Substitution of equation (5.7) in the normality 
condition in equation (5.4) gives 

(5.8) 

Equation (5.8) can be written as 

(5.9) 

Equation (5.9) defines the partition function. Making the argument of the exponential as a square 
in equation (5.9), one obtains 



Let 

then 

dt = !J: 
dx V"2 

Making use of equations (5.11) and (5.12) in equation (5.10), we get 

},.z 
1 exp (-) 

exp 0'0) '" __ 4_A.....:2:..,. f~ exp (-t 2 ) dt p:; -~ 

A.2 
2 exp (_1 ) 

4A.2 r 2 -----=-- Jo~ exp (-t ) dt p:; 

Consider the expression: 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

Let k = e . Then t = kll2 and [dk/dt] '" 2 t. Hence, equation (5.14) can be simplified as 
Substituting equation (5.15) in equation (5.13), one gets 

~ ~ dk 1 ~ J exp(-t 2 )dt= J exp(-k)-I-'2 =-Jk-1I2 exp(-k)dk 
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o 0 2k 2 0 

1 J~ [(112)-1] [(1/2) .Jii 
(5.15) 

=- k exp(-k)dk=---'---'-
2 0 2 2 
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Substituting equation (S.1S) in equation (S.13), one gets 

A2 
2 exp (_I) 

___ 4A_2_ ~ = ~2) 
vr;. ~ A2 

(S.16) 

Equation (S .16) is another definition of the partition function. The zeroth Lagrange multiplier Ao 
is given by equation (S.16) as 

,2 
1 1 11.1 A =-lnn--lnA +-

o 2 2 2 4' 11.2 

(5.17) 

One also obtains the zeroth Lagrange multiplier from equation (S.9) as 

(S.18) 

5.1.3 RELATION BETWEEN LAGRANGE MULTIPLIERS AND CONSTRAINTS 

Differentiating equation (S.18) with respect to Al and A2, respectively, one gets 

aAo :: _ r: x exp (- AIX - A2x2) dx 

aAI r: exp (- AIX - A2X2) dx 

-r: x exp (- AO - AIX - A2X2) dx 
(S.19) 

-r: x f(x) dx = - x 

aAo r.~ x 2 exp (- AIX - A2X2) dx 

aA2 r.~ exp ( - AIX - A2X2) dx 

- r x 2 ex:p (- A - A x - A x 2) dx 
-~ 0 I 2 

(S.20) 

- r:~ x 2 f(x) dx = - (s; + x2) 

Differentiating equation (S.17) with respect to Al and A2 • respectively, one obtains 

(S.21) 
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(5.22) 

Equating equation (5.19) to equation (5.21) and equation (5.20) to equation (5.22) one gets 

- x (5.23) 

1 Al 2 2 2 +-(-) =S +X 
2A2 4 A2 x 

(5.24) 

From equation (5.23), one gets 

(5.25) 

Substituting equation (5.25) in equation (5.24) one obtains 

1 4A;X 
+---

4 A2 
2 

1 (5.26) 

Eliminating A2 in equation (5.23) yields 

-2_I_x= x 
2 2 2sx Sx 

(5.27) 

5.1.4 RELATION BETWEEN LAGRANGE MULTIPLIERS AND PARAMETERS 

Substitution of equation (5.17) in equation (5.7) yields 
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(5.28) 

A comparison of equation (5.28) with equation (5.Ia) shows that 

(5.29) 

(5.30) 

5.1.5 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

The normal distribution has two parameters a and b which are related to the Lagrange multipliers 
by equations (5.29) and (5.30), which themselves are related to the constraints through equations 
(5.26) and (5.27) [ and in tum through equations (5.5) and (5.6)]. Eliminating the Lagrange 
multipliers between these two sets of equations, we obtain 

a = x 

b=s 
x 

5.1.6 DISTRIBUTION ENTROPY 

Substitution of equation (5.31) and (5.32) in equation (5.36b) yields 

-2 
I(x)=[ln..j21t + in Sx +~] f~ I(x) dx 

2 2 -~ 
Sx 

1 f~ 2 X f~ + - x I(x) dx - - x I(x) dx 
2 2_~ 2_~ 

Sx Sx 

-2 
= [in {iTT. + in s + ~] 

2 
2 Sx 

1 (-2 2) + -- x + Sx 
2 2sx 

(5.31) 

(5.32) 

(5.33) 
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5.2 Parameter - Space Expansion Method 

5 .2.1 SPECIFICATION OF CONSTRAINTS 

Following Singh and Rajagopal (1986), the constraints for this method are given by equation 
(5.4) and 

f OO (xa) f(x) dx = E[ xa] 
-00 b 2 b 2 

(5.34) 

00 x 2 x 2 f (-) f(x) dx = E[-] 
- 2b 2 2b 2 

(5.35) 

5.2.2 DERIVATION OF ENTROPY FUNCTION 

The pdf corresponding to POME and consistent with equations (5.4), (5.34), and (5.35) takes the 
form: 

(5.36) 

where AD, AI' and 1..2 are Lagrange multipliers. Insertion of equation (5.36) into equation (5.4) 
yields 

= exp [- 11.1 -f oo , xa 
-00 b2 

2,2 b{iTI a 11.1 
= -- exp [--] p:; 2A.2 b 2 

(5.37) 

Equation (5.37) is the partition function. Taking logarithm of equation (5.37) leads to the zeroth 
Lagrange multiplier which can be expressed as 

1 1 1..0 = In b + - in (211:) -- In A 
222 

The zeroth Lagrange multiplier is also obtained from equation (5.37) as 

(5.38) 
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(5.39) 

Introduction of equation (5.38) in equation (5.36) gives 

(5.40) 

A comparison of equation (5.40) with equation (5.1) shows that A2 = 1 and At =-1. 
Taking logarithm of equation (5.40) and multiplying by [-1], one gets 

(5.41) 

Multiplying equation (5.41) by f(x) and integrating from minus infinity to positive infinity, we 
get the entropy function which takes the form: 

1 1 a 2 Ai Al a A2 2 
[if) = --lnA2 +lnb +-In(2rt) +--+-E[x] +-E[x ] (5.42) 

2 2 2A2b 2 b 2 2b 2 

5.2.3 RELATION BETWEEN DISTRmUTION PARAMETERS AND CONSTRAINTS 

Taking partial derivatives of equation (5.42) with respect to At, A2, a, and b individually, and then 
equating each derivative to zero, one obtains 

(5.43) 

(5.44) 

(5.45) 

(5.46) 
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Simplification of equation (5.43) through (5.46) results in 

E[x]=a (5.47) 

E [ X 2] = a 2 + b 2 (5.48) 

E[x]=a (5.49) 

(5.50) 

Equations (5.47) and (5.49) are the same, and so are equations (5.48) and (5.50). Thus, the 
parameter estimation equations are equations (5.47) and (5.48). 

5.3 Other Methods of Parameter Estimation 

Three other parameter estimation methods are briefly discussed: methods of moments, 
probability-weighted moments and maximum likelihood estimation. 

5.3.1 METHOD OF MOMENTS 

The normal distribution has two parameters, a and b, so the first two moments will suffice. The 
first moment about the origin is calculated as follows: 

f~ 1 (x-a)2 
M)= X ~exp[- b2 Jdx 

~ b-v2TI 2 (5.51) 

Equation (5.51) is easily solved by transforming x to the standard normal variate z = (x-a)/b. A 
little algebraic manipulation shows that 

(5.52) 

Thus, parameter a is the same as mean of X or the first moment. The second moment is computed 
about the centroid a as 

f~ 1 (x-a)2 
M;= (x-a)2 ~exp[- 2 Jdx 

b,,2TI 2b (5.53) 

Using the transformation y = (x - a )2/2 b2 , and noting that y is an even function and the integral 
is twice the integral from 0 to infinity, we obtain 

(5.54) 

Equation (5.54) shows that parameter b is the same as the second moment about the centroid, 
S2 , where s is the standard deviation. 
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5.3.2 METHOD OF MAXIMUM LIKELIHOOD ESTIMATION 

The log-likelihood function of a sample of size n drawn from a normal distribution is given by 

1 n 

logL(a,b)=-nlogb-nlog.J2I1 -2b2 B (x i -a)2 
(5.55) 

Differentiating equation (5.55) with respect to a and equating the derivative to zero yield 
1 n 

a=-L, Xi 
n i=1 (5.56) 

Differentiating equation (5.55) with respect to b and equating the derivative to zero yield 
1 n 

b2=-L,(xi -a)2 
n i=1 (5.57) 

Equation (5.57) shows that parameterb is the same as the standard deviation. Thus, the methods 
of moments and maximum likelihood estimation yield the parameter estimates. 

5.3.3 METHOD OF PROBABILITY-WEIGHTED MOMENTS 

The normal distribution cannot be expressed explicitly in terms of x and this makes evaluation 
of probability-weighted moments (PWMs) complicated. Hosking (1986) derived PWMs for 
normal distribution in terms of L-moments: 

(5.58) 

(5.59) 

where a l and az are first and second order L-moments, and bo and b l are PWMs of the zero and 
first order. The parameter estimates by the method of PWMs are given in terms of the sample 
moments: 

(5.60) 
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CHAPTER 6 

TWO-PARAMETER LOGNORMAL DISTRIBUTION 

The logarithmic normal probability law is widely used to describe the distribution of annual 
maximum values of hourly or daily precipitation (Weiss, 1957), flood flows (Chow, 1951, 1954), 
hydraulic conductivity (Freeze and Cherry, 1979), soil properties ( physical, chemical and 
microbiological) (Parkin and Robinson, 1993), etc. Kalinske (1946) found that many times river 
discharge data and sand sizes followed the normal law if they were logarithmically transformed. 
Chow (1951, 1954, 1959) gave a historical background of the log-probability law and discussed 
its wide-ranging application in engineering, and exensively worked with the lognormal 
distribution. Aitchison and Brown (1957) presented a comprehensive statistical treatment of the 
lognormal distribution. Parkin et al. (1988) evaluated statistical methods for log-normally 
distributed variables, including the method of moments, maximum likelihood, and Finney's 
method. Parkin and Robinson (1993) evaluated soil properties using log-normal distribution. 
Brakensiek (1958) employed the least squares method for fitting the log-normal distribution to 
annual runoff. Moran (1957) fitted a log-normal distribution to fifty annual values of extreme 
monthly flow of the River Murray in Australia. Lewis (1979) applied log-normal distribution to 
maximum measured discharges of River Kafue in Africa.Weiss (1957) developed a nomogram 
for log-normal frequency analysis.Alexander et al. (1969) discussed statistical properties of 
lognormal distribution. Using mean square error of estimation as a criterion, Stedinger (1980) 
evaluated the efficiency of alternative methods of fitting the lognormal distribution. Charbeneau 
(1978) compared two- and three-parameter log-normal distributions for simulation of stream 
flow. 

A random variable X with range {x: 0 < x < oo} is said to have a lognormal distribution 
if Y = In X is normally distributed. That is, X = exp (Y) withY normal. Then the probability 
density function (pdf), f(x), of X is given by 

1 -(lnx -a)2 
fix) = -- e xp [ J,x>O 

xb,fiTI. 2b 2 
(6.1a) 

=0, x,,; 0 (6.1b) 

where a and b are parameters which, respectively, are the mean and the variance ofY, .y and s/. 
These are related to the mean x and the variance Sx 2 of X, denoted, respectively, as c and d: 

(6.2a) 
and 
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The cumulative distribution function (cdf) of X can be written as 

F(x) = rx _1_ exp [_ (Inx-a)2] dx 
J 0 xb..j2i 2b 2 
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(6.2b) 

(6.3) 

If the variate In x is standardized as u = [In x - a ]Ib, then the standard normal variate u will have 
the pdf given by equation ( 5.2). 

6.1 Ordinary Entropy Method 

6.1.1 SPECIFICATION OF CONSTRAINTS 

Taking logarithm of equation (6.1a) to the base 'e', one gets 

lnftx) = -In(b.[i1t - In x _ (In x - a)2 
2b 2 

(6.4) 

Multiplying equation (6.4) by [-f(x)] and integrating between 0 and 00, one obtains the entropy 
function as 

lex) = - Jo~ftx)lnftx)dx=ln(b.f2rr) Jo~ftx)dx+ Jo~/nxftx)dx 

+ r~ (lnx-a)2 ftx)dx 
Jo 2b2 

(6.5) 

From equation (6.5), the constraints appropriate for equation (6.1a) can be written (Singh et al., 
1985, 1986) as: 

fo~ f(x) dx = 1 (6.6) 

Jo~ In x I(x) dx = E[ln x] = E[y] = y (6.7) 

fo~ (In x -a)2/(x) dx = E[/n x - a)2] (6.8) 

Recalling that a = Y , one can write equation (6.8) as 
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fo ~ [(In x f + a 2 - 2a in x] I( x) dx 

= fo~ (In xf I(x) dx + a 2 fo~ I(x) dx 

- 2a fo~ in x I(x) dx 

= fo~ (In x)2/(x) dx - a 2 

Making use of equation (6.9), equation (6.8) can be written as 

6.1.1 CONSTRUCTION OF ZEROTH LAGRANGE MULTIPLIER 

(6.9) 

(6.10) 

The least-biased pdf based on POME and consistent with equations (6.6) to (6.8) takes the form: 

(6.11) 

where Ao, AI, and A2 are Lagrange multipliers. Substitution of equation (6.10 in equation (6.6) 
yields 

(6.12) 

Equation (6.12) yields the partition function given as 

(6.13a) 

or 

exp(Ao) = fo~ exp(lnx -AI)exp[ -A2 (inx)(lnx)]dx 

r~ -A -A lnx 
= Jo x lexp[(lnx 2 )]dx (6.13b) 

= fo~ x -AI (x -A2)lnx dx 

Let z = In x . Then 
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[dzldx] = [1/x], x = exp (z); and dx = x dz = exp (z) dz. Hence, 
~ 

exp(A·o)= f exp(-d'l )exp(-zz,1z )exp(z)dz 

(6.14) 
~ 

= f exp[-(At -1)z-,1z zZJdz 

Making the argument of the exponential as a square in equation (6.14), one gets 

(6.15) 
Let 

Substituting these quantities in equation (6.15), we get 

(AI - 1)z 
exp [ ] 

exp (Ao) 
4 Az r: exp (- t Z ) dt 

Fz 
(AI - l)z 

exp [ ] 
4 Az 

2 Loo exp (- t Z ) dt 

Fz 
(AI - 1)2 

exp [ ] 
4 Az {it 

2- (6.16) Fz 2 

exp (Ao) = -exp[ ] ~ (AI - l)z 

Az 4 Az (6.17) 

Equation (6.17) defines the partition function. Thus, the zeroth Lagrange multiplier Ao is obtained 
as 
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(6.18) 

The zeroth Lagrange multiplier is also obtained from equation (6.12) as 

(6.19) 

6.1.3 RELATION BETWEEN LAGRANGE MULTIPLIERS AND CONSTRAINTS 

Differentiating equation (6.19) with respect to A] and A2 ,respectively, one gets 

aAo fo~ In x [exp (-A\ In x -A2 (In x))2] dx 

aA\ fo~ exp [-A\ In x -A2 (In x)2] dx 

- Jo~ In x exp [-AO -A\ in x -A2 (In xf] dx 
(6.20) 

- fo~ in xf (x) dx = E[ln x] = - y 

aAo fo~ (In X)2 [exp (-A\ In x - A2 (In x)2] dx 

aA2 fo~ exp [- A\ In x - A2 (In X)2] dx 

- fo~ (In x)2 exp [- Ao - A\ In x - A2 (In X)2] dx 
(6.21) 

- r~ (In x)2 f(x) dx = - (s2 + y2) 
Jo Y 

Differentiating equation (6.18) with respect to A] and A2 , respectively, one obtains 

aAo 2 (A\ - 1) (A\ - 1) 

aA\ 4 A2 2 A2 
(6.22) 

aAo (A\ - 1)2 

aA2 4 A2 2 A2 2 
(6.23) 

Equating equations (6.20) and (6.22) as well as equations (6.21) and (6.23), one gets 



Substitution of equation (6.24) in equation (6.25) produces 

4 A2 y2 
___ + _1_ = S2 + y2 

4A; 2A2 y 

1 A =-
2 2 

2 Sy 

Eliminating}.2 from equation (6.24), one gets 

2 
Sy 

y 
2 

Sy 
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(6.24) 

(6.25) 

(6.26) 

(6.27) 

6.1.4 RELATION BETWEEN LAGRANGE MULTIPLIERS AND PARAMETERS 

Equation (6.18) can now be expressed as 

A =1. in 7t - 1. in [_1_] + z.: ___ _ 
o 2 2 2s: s: 4 (l/2Is:) 

1 -2 
= in {it - - in (2sy2r 1 + L 

2 2 2sy 
-2 

= in {it + In (/iSy) + ~ 
2sy 

The pdf in equation (6.11) can now be written as 

(6.28) 
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I(x) = exp [- In {ii - In ({i Sy) - y22 
2sy 

- (l - y) In x _ (In x?] 
2 2 

Sy 2sy 

= exp [In ({iir t ] exp [In (Sy {ir t 

-2 - (I? 
. exp [- L In x + L In x - ~] 

2 2 2 
2~ ~ 2~ 

= _1_ exp [In (xrt] exp [- _1_ (In x _ y2)] 

Sy{iTt 2s: 

+ 1 exp [ __ 1_ (In x _ y)2] 

xSy{iTt 2s: 

(6.29) 

A comparison of equation (6.29) with equation (6.1a) shows that a = y and b = Sy. 

6.1.5 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

The two-parameter lognormal distribution has 2 parameters a and b which, respectively, equal y 
and Sy as shown above. These parameters are related to the Lagrange multipliers through 
equations (6.26) and (6.27),which, in tum, are related to constraints in equations (6.7) and 
(6.8).Eliminating the Lagrange multipliers between these two sets of equations, we get 
distribution parameters in terms of constraints. 

6.1.6 DISTRIBUTION ENTROPY 

The entropy of the lognormal distribution can be derived in two ways. 

l(x) - r~ I(x) in I(x) dx = in (s {iTt) r~ I(x) dx Jo y Jo 
+ r~ In x I(x) dx + _1_ r~ (In x - y)2 /(x) dx 

Jo 2 2 Jo Sy 

In (s {iTt) + y + _1_ s2 = In (s..j2ii) + y + ..!.. In e 
y 2 2 Y Y 2 

Sy 

(6.30) 

In (syv2rre) + y= ley) + y 

where I(y) = In(syV2rre). 
Alternatively, since the transformation x = eY = g(y) is monotonic with the Jacobian J(y/x) 

= l/x, the above result follows immediately. From the general relationship, i.e., 

I(x)=I(y) - E { InlJ( y / x )1] 



J = a(x,y) 
a(u, v) 

ax ax 

au av 

ay ay 
au av 

J( 1..) = ay = ~ (in x) = l 
x ax ax x 

lex) = ley) -E[ In Ill] = ley) + E[ln x] + l(y) + Y 
x 

which is the same as before. 

6.2 Parameter - Space Expansion Method 

6.2.1 SPECIFICATION OF CONSTRAINTS 
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(6.31) 

For this method, the constraints are given, following Singh and Rajagopal (1986), by equation 
(6.6) and 

f~ a In x a In x 
( -In x + -2-) f (x) dx = E [ -In x + -2-] 

o b b 
(6.32) 

and 

(6.33) 

6.2.2 DERIV ATION OF ENTROPY FUNCTION 

The pdf corresponding to POME and consistent with equations (6.6) and (6.32) and (6.33) takes 
the form 

f(x) = exp [- A -A a In x + AI In x- A «(in X)2 + a 2
)] 

o 1 b 2 2 2b 2 
(6.34) 

where Aa, AI' and A2 are Lagrange multipliers. Insertion of equation (6.34) into equation (6.6) 
yields 
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2 b2' 2 b 1\.\ 
(6.35) 

+-+--
2A2 2A2 

a 2 Ai \ b 2 A\ 
+ --- - a - + --] 

2b 2 A2 A2 A2 

Equation (6.35) defines the partition function. Taking logarithm of equation (6.35) yields the 
zeroth Lagrange multiplier given as 

The zeroth Lagrange multiplier is also obtained from equation (6.35) as 

J, ~ A\ a 
AO = In exp [- - lnx 

o b 2 

A2 
+ A\ In x - - ((lnx)2 + a 2)] dx 

2b 2 . 

Introduction of equation (6.35) in equation (6.34) produces 

f(x) 
_ {i; b 2 b 2 Ai 
---exp[-- ---

b..j2TI. 2A.2 2A.2 

aAi a 2 Ai aA\ b 2 A\ 
+----+- --

A2 2 b 2 A2 A2 A2 

+ A\ lnx - A\ a lnx _ A (lnx )2 ] 
b2 2 b 2 

(6.36) 

(637) 

(6.38) 

A comparison of equation (6.38) with equation (6.1a) shows that A1 = - 1 and A2 = 1. Taking­
logarithm of equation (6.38), one obtains 
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1 1 
-In f(x) = - - In A2 + In b + - In (2n) 

2 2 

b 2 Ai Ai a 2 Ai a A) b 2 A) 
+---a-+----+--

2 A2 A2 2 b 2 A2 A2 A2 
(6.39) 

a~ Az 2 
- A) In x + - In x + - (In x) 

b 2 2b 2 

MUltiplying equation (6.39) by f(x) and integrating from - 00 to + 00, we get the entropy function: 

J(f) 1 1 
= - - In A2 + Inb + - In (2n) 

2 2 
2~2 ~2 b 2 b A) aA) 

+-+----
2 A2 2 A2 A2 

(6.40) 

6.2.3 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

Taking partial derivatives of equation (6.40) with respect to AI' A2, a and b, and equating each 
derivative to zero, one obtains 

aJ 2b 2 A A) 2a 2 A 
=0=--) - 2a- +--) 

aA) 2>..2 A2 2b 2 A2 
a b 2 

- E [Inx] + .!!:.- E [Inx] + -
A2 A2 b 2 

(6.41) 

b 2 A2 2 
aJ b 2 ) aA) 

- =0 = - -- +-
aA2 2>..2 2>..2 2A2 AZ 2 2 2 

2 A2 aA) b 2 A) a I 1 -- +- - + - E [(lnxn 
2b 2 A2 AZ A2 2b Z 

2 2 2 

(6.42) 
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~ = 0 
Ja 

~ = 0 = 1. 
Jb b 

2HJ 
+--

A2 

2H2 2b 1 
+- + ---

2AZ 2AZ 

2aAJ 
- -- E [lnx] 

b 3 

2a2A~ 

2b 3 A2 
2A 

- _2 E [(lnx)2] 
2b 3 

Simplification of equations (6.41) through (6.44) leads, respectively, to 

E[lnx]=a 

E[lnx]=a 

Thus, the parameter estimation equations are equations (6.45) and (6.46). 

6.3 Other Methods of Parameter Estimation 

6.3.1 METHOD OF MOMENTS 

(6.43) 

(6.44) 

(6.45) 

(6.46) 

(6.47) 

(6.48) 

Chow (1954, 1959) developed a graphical method to determine the frequency factor of the 
lognormal (LN2) distribution. The LN2 distribution has two parameters; therefore two moments 
will suffice. Kite (1978) has given the first two moments of X as 

M J =exp[a+(b 2 12)] 
(6.49) 

(6.50) 

where M] and M zc are, respectively, the first moment about the origin and the second moment 
about the centroid in the x domain. Taking natural logarithm of equations (6.49) and (6.50). 

b 2 

InM =a+- (6.51) 
1 2 
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(6.52) 

Equations (6.51) and (6.52) are solved with M] and M2c replaced by their sample estimates. The 
parameter estimation equations are 

b 2 = In [ (M ~ / M 1 2 ) + 1 ] 

b2 

a = In M 1--
2 

(6.53) 

(6.54) 

Equations (6.53) and (6.54) relate b and a to the sample mean M\ and sample variance, M2c • 

6.3.2 METHOD OF MAXIMUM LIKELIHOOD ESTIMATION 

The log-likelihood function of a sample of size n drawn from an LN2 distribution is given as 

n 1 n n 1 n 
In L = L In [ -] - -In (2 II ) - -In b 2 - -2 L [In Xi - a ]2 (6.55) 

i=l Xi 2 2 2b i=l 

Differentiating equation (6.55) with respect to parameter a and equating the derivative to zero 
give 

1 n 

a=-LInxi 
n i=l 

(6.56) 

Differentiating equation (6.55) with respect to b and equating the derivative to zero yield 

1 n 

b 2 =-L [Inxi -a] 2 

n i=l 

(6.57) 

Equations (6.56) and (6.57) correspond to the estimates given by the method of moments when 
the transformed observations y = In x are used which, in tum, are normally distributed. 

6.3.3 METHOD OF PROBABILITY-WEIGHTED MOMENTS 

The LN2 distribution cannot be explicitly expressed in terms of x and therefore complex algebra 
is needed to derive the probability-weighted moments (PWMs). Hosking (1990) derived PWMs 
of the LN2 distribution in terms of L-moments: 

(6.58) 
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(6.59) 

where LI and ~ are first and second order L-moments, and erf (.) is the error function defined 
as 

2 x 

erf (x)= r;:;- f exp(-u 2 )du=2 F (xJ2)-l 
'\I'll 0 

(6.60) 

where F (.) Is the normal distribution. Equations (6.58) and (6.59) are solved for parameters a and 
b by replacing LI and ~ by their sample estimates: 

L 
b=2erf -I (_2 )=2erf-1 (t) 

LI 

b2 

a =In L --
1 2 

(6.61) 

(6.62) 

In equation (6.61) erf'l (t) is evaluated using equation (6.60) as ul (2)°.5 , where u is the standard 
normal variate corresponding to F = (t + 1)12. 

References 

Aitchison, l. and Brown, l.AC., 1957. The Lognormal Distribution. Cambridge University 
Press, London, u.K. 

Alexander, G.N., Karoly, A and Susts, AB., 1969a. Equivalent distributions with application 
to rainfall as an upper bound to flood distributions. Journal of Hydrology, Vol.79, No. 
4, pp. 322-344. 

Alexander, G.N., Karoly, A and Susts, AB., 1969b. Equivalent distributions with application 
to rainfall as an upper bound to flood distributions. Journal of Hydrology, Vol. 9, No.3, 
pp. 345-373. 

Brakensiek, D.L., 1958. Fitting a generalized log-normal distribution to hydrologic data. 
Transactions, American Geophysical Union, Vol. 39, No.3, pp. 469-473. 

Charbeneau, RJ., 1978. Comparison of the two- and three-parameter lognormal distributions 
used in streamflow sysnthesis. Water Resources Research, Vol. 14, No.1, pp. 149-150. 

Chow, V.T., 1951. A general formula for hydrologic frequency analysis. Transactions, American 
Geophysical Union, Vol. 32, pp. 231-237. 

Chow, V.T., 1954. The log-probability law and its engineering application. Proceedings, 



81 

American Society of Civil Engineers, Vol. 80, pp. 536-1 to 536-14. 

Chow, V.T., 1959. Determination of hydrologic frequency factor. Journal of the Hydraulics 
Division, ASCE, Vol. 85, pp. 93-98. 

Freeze, A.R. and Cherry, J.e., 1979. Ground Water. Prentice Hall, Inc., Englewood Cliff, New 
Jersey. 

Hosking, J.R.M., 1990. L-moments: Analysis and estimation of distributions using linear 
combinations of order statistics. Journal of Royal Statistical Society, Series B, Vol. 52, 
No.1, pp. 105-124. 

Kalinske, A.A., 1946. On the log-probability law. Transactions, American Geophysical Union, 
Vol. 27, No. V, pp. 709-710. 

Kite, G. W., 1978. Frequency and Risk Analyses in Hydrology. Water Resources Publications, 
Fort Collins, Colorado. 

Lewis, G., 1979. A statistical estimation of flood flows. Proceedings, Institution of Civil 
Engineers, Part 2, Vol. 67, pp. 841-844. 

Moran, P.A.P., 1957. The statistical treatment of flood flows. Transaction, American 
Geophysical Union, Vol. 38, No.4, pp. 519-523. 

Parkin, T.B., Meisinger, J.J., Chester, S.T., Starr, S.T., and Robinson, J.A., 1988. Evaluation of 
statistical estimation methods for lognormally distributed variables. Soil Science Society 
of America Journal, Vol. 52, pp. 323-329. 

Parkin, T.B. and Robinson, J.A., 1993. Statistical evaluation of median estimators for 
lognormally distributed variables. Soil Society of America Journal, Vol. 57, pp. 317-323. 

Singh, V.P. and Rajagopal, A.K., 1986. A new method of parameter estimation. Hydrological 
Science and Technology, Vol. 2, No.3, pp. 33-40. 

Singh, V.P., Rajagopal, A.K. and Singh, K., 1986. Derivation of some frequency distributions 
using the principle of maximum entropy. Advances in Water Resources, Vol. 9, pp. 91-
106. 

Singh, V.P., Singh, K. and Rajagopal, A.K., 1985. Application of the principle of maximum 
entropy. Completion Report 06, Louisiana Water Resources Research Institute, Louisiana 
State University, Baton Rouge, Louisiana. 

Stedinger, J.R., 1980. Fitting log normal distributions to hydrologic data. Water Resources 
Research, Vol. 16, No.3, pp. 481-490. 

Weiss, L.L., 1957. A nomogram for log-normal frequency analysis. Transactions, American 
Geophysical Union, Vol. 38, No.1, pp. 33-37. 



CHAPTER 7 

THREE-PARAMETER LOGNORMAL DISTRIBUTION 

The three-parameter lognormal (TPLN)distribution is frequently used in hydrologic analysis of 
extreme floods, seasonal flow volumes, duration curves for daily streamflow, rainfall intensity­
duration, soil water retention, etc. It is also popular in synthetic streamflow generation. 
Properties of this distribution are discussed by Aitchison and Brown (1957), and Johnson and 
Kotz (1970). Its applications are discussed by Slade (1936), Chow (1954), Matalas (1967), 
Sangal and Biswas (1970), Fiering and Jackson (1971), Snyder and Wallace (1974), Burges et 
al. (1975), Burges and hoshi (1978), Charbeneau (1978), Stedinger (1980), Singh and Singh 
(1987), Kosugi (1994), among others. Burges et al. (1975) discussed properties of the three­
parameter lognormal distribution and compared two methods of estimation of the third parameter 
"a". Kosugi (1994) applied the three-parameter lognormal distribution to the pore radius 
distribution function and to the water capacity function which was taken to be the pore capillary 
distribution function. He found that three parameters were closely related to the statistics of the 
pore capillary pressure distribution function, including the bubbling pressure, the mode of 
capillary pressure, and the standard deviation of transformed capillary distribution function. 
Burges and Hoshi (1978) proposed approximating the normal populations with 3-parameter 
lognormal distributions to facilitate multivariate hydrologic disaggregation or generation schemes 
in cases where mixed normal and lognormal populations existed. 

Several estimation techniques have been applied to estimate parameters of the three­
parameter lognormal distribution. Sangal and Biswas (1970) used the median method, 
comprising the mean, median and standard deviation, to estimate the three parameters. Bates et 
al. (1974) applied the median method and the skew method to estimate the parameters and 
provided tables of parameters. Snyder and Wallace (1974) fitted a lognormal distribution using 
the method of least squares. Using the mean square error of selected quantiles, Stedinger (1980) 
evaluated the efficiency of alternative methods of fitting, including method of moments (using 
sample moment estimators), quantile method (using sample mean, variance, and quantile 
estimate of the lower bound), method of moments (using unbiased standard deviation and skew 
coefficient), and quantile method with moment estimates of the first two parameters. Hoshi et 
al. (1984) compared, using average bias and root mean square error, the maximum likelihood 
estimation (MLE) method, method of moments, and two quantile-lower bound estimators in 
combination with two moments in real or in log space. Singh and Singh (1987) applied the 
principle of maximum entropy to estimate the TPLN parameters and compared it with the 
method of moments and maximum likelihood estimation. Using Monte Carlo simulation, Singh 
et al. (1990) estimated parameters and quantiles of the three-parameter lognormal distribution 
using the method of moments, modified method of moments, maximum likelihood estimation, 
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modified maximum likelihood estimation and entropy. Stevens (1992) employed MLE in which 
historical data could also be included. Using Monte Carlo simulation he demonstrated that 
inclusion of historical data reduced the bias and variance of extreme flows. 

For a random variable X, if Y=ln(X-a) has a normal distribution then X will have a 
lognormal distribution whose probability density function (pdt) can be expressed as 

f(x) = 1 exp [ -[In(x-a)-bf] 
(x - a) c{Fit 2c2 

(7.1a) 

where 'a' is a positive quantity defined as a lower boundary, and b and c2 are the form and scale 
parameters of the distribution. It turns out that b and c 2 are equal to the mean (y) and variance s: of In (x-a). Thus, the TPLN distribution has three parameters: a, b, and c. The three­
parameter lognormal (LN3) distribution is similar to the two-parameter lognormal (LN2) 
distribution, except that x is shifted by an amount a which represents a lower bound. Thus, (x-a) 
represents a shifted variable. The standardized variable u is obtained in the usual manner as 

In (x - a) - b 
u= (7.1b) 

c 

The cumulative distribution function (cdt) of the TPLN distribution can be written as 

F() f x I [ (In(x-a)-b)2]d x= exp- x 
a (x-a)c{21t 2c 2 

(7.2) 

Because of the integral nature of equation (7.2), it is not possible to express the LN3 distribution 
in terms of x as a function of F. 

7.1 Ordinary Entropy Method 

7 .1.1 SPECIFICATION OF CONSTRAINTS 

Integrating equation (7.1a) we obtain: 

f ~ f(x)dx= _1_ f~ _l_exp [-[In(x-a) - b]2]dx 
a c.,ffit a (x-a) 2c 2 

(7.3) 

Let 

z In(x-a) - y. dz 
c ' dx (x-a)c 

(7.4) 
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Substituting equation (7.4) in equation (7.3), we get 

f ~ 1 f~ 1 2 f(x)dx = -- ---exp [( -z 12)]dz (x-a)c 
a c..j21t -~ (x-a) 

= _1_ f~ exp [( -z 2/2)]dz = _2_ r~ exp [( -z212)]dz 
..j21t -00 ..j21t 10 

(7.5) 

Let 
z 

= k. Then equation (7.5) can be written as 
{2 

f OO f(x)dx = _2_ roo exp (_k2) .fi dk 
a ..j21t 10 

= 2.fi roo exp (_k2) dk = 2.fi {it = 1 
..j21t 10 ..j21t 2 

(7.6) 

Taking logarithm of equation (7.1 a) to the base 'e' results in 

r;;-:: [In(x-a)-b]2 
In!(x)=-ln[c..",2n-]-ln(x-a)- 2 

2c 
(7.7) 

~ [In(x-a)]2 
= -In [c -V 2 n- ]-In (x - a ) - 2 

b 2 bln(x-a) 
--+-~..,----~ 

2 c 2 c2 2c 

Multiplying equation (7.7) by [-f(x)] and integrating between a to 00 , one obtains the entropy 
function: 

JOO ~ b 2 J~ Iif) = - f(x) In f(x) dx = [In(cv2n) + -] f(x) dx 
a c 2 a 

b foo 1 Joo 2 + (1--) in(x-a) f(x) dx + - [In(x-a)] f(x)dx 
C 2 a 2c 2 a 

(7.8) 

From equation (7.8), the constraints appropriate for equation (7.1a) can be written (Singh et al., 
1985, 1986) as 

~ 

J ! (x) dx = 1 (7.9) 

r In(x-a) = E [In(x-a)] = E [y] = y (7.10) 
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JaW (In(x-a»2 f(x)dx = E [(In(x-a))2] 

= var[ln(x-a)] + y2 = s: + y 
(7.11) 

where var [ . ] is the variance of [ . ]. 

7.1.2 CONSTRUCTION OF ZEROTH LAGRANGE MULTIPLffiR 

The least-biased pdf consistent with equations (7.9) to (7.11) and corresponding to the principle 
of maximum entropy (POME) takes the form: 

f(x) = exp [- Ao - Al In(x-a) - A2 (In(x-a))2] (7.12) 

where Ao, AI, and A2 are Lagrange multipliers. Integrating equation (7.12) between a and 00, 

one gets 

~ ~ 

f f(x)dx :::; f exp (-It 0 - It 1 In(x -a) - It 2 (In(x _a))2 ] dx (7.13) 

Because the left side of equation (7.13) equals one by virtue of equation (7.9), the partition 
function becomes 

~ 

exp (It 0) = f exp [ -It 1 In (x - a) -It 2 (In (x - a)) 2 ] d x 

In order to evaluate the above integral, let 

z = In(x-a); [dzldx] = [1/(x-a)] 
(x -a) = exp(z); dx = exp(z) dz 

Substituting these quantities in equation (7.14), one gets: 

exp (AO) = r: exp [-A 1Z-A2Z2] e Z dz 

= r: exp [-(A I -1)Z-A2Z2 ]dz 

{IT. (AI _1)2 
=-exp[ ] 

A2 4A.2 

(7.14) 

(7.15) 

(7.16) 
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Taking logarithm of equation (7.16) results in the zeroth Lagrange multiplier Ao given as 

1 1 (A\ -1)2 
Ao = - In 1t - - In A2 + --'---

2 2 4A2 
(7.17) 

One can also write the zeroth Lagrange multiplier from equation (7.14) as 

= 

A, o=lnf exp[-A,\ln(x-a)-A,2 {In(x-a)}2]dx (7.18) 

7.1.3 RELATION BETWEEN LAGRANGE MULTIPLIERS AND CONSTRAINTS 

Differentiating equation (7.18) with respect to A, and A2, one gets 

aAo {OO In(x-a)exp[ -A\ln(x-a)-A2(ln(x-a»2]dx 

a A\ faoo exp [ -A]ln(x-a)-A2 (In(x-a))2]dx 

= - {OOln (x-a)exp [ -Ao -A]ln\ (x-a) -A2(ln(x-ai)]dx 

= - f In (x-a).f(x)dx = -y 

aAo faoo(ln(x-a»2exp[ -A]ln(x-a)-A2 (In(x-a))2]dx 

aA2 {OO exp[ -A\ln(x-a)-A2(ln(x-a»2]dx 

= - faoo(ln(x-a»2exp[ -AO-A]ln(x-a)-A2(ln(x-a»2]dx 

= - f[ln(x-a)f.f(x)dx 

= -E[(ln(x-a»2] = -(s: +y2) 

Furthermore, one can write 

Var [In(x-a)f 

Also, differentiating equation (7.17) with respect to A, and A.2 we get 

(7.19) 

(7.20) 

(7.21) 



87 

aAo A -1 
+_1_ (7.22) 

aAI 2).2 

aAO (AI -l)2 
(7.23) 

aAI 4A2 2).2 

a2AO 1 (AI - 1 )2 
(7.24) -- =- + 

aA2 2).2 2).3 
2 2 2 

Equating equation (7.19) to (7.22), equation (7.21) to (7.24), as well as equation (7.21) to (7.24), 
we obtain 

(7.25) 

(7.26) 

(7.27) 

7 .1.4 RELATION BETWEEN LAGRANGE MULTIPLIERS AND PARAMETERS 

Inserting equations (7.25) and (7.26) into equation (7.17), one gets 

(7.28) 

Thus, the pdf can be written as 
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f(x) = exp [-In.jTI -In( /is ) - L 
y 2S2 

y 

_ (1 - L) In (x _ a) _ (In (x - a) )2 ] 
2 2 

2sy 2sy 

= exp[ln(.jTIrl]exp[ln(S /ifl] exp [-L-ln(x-a) 
y 2 2 Sy 

+ Y In(x -a) _ (In(x -a))2] 
2 2 

Sy 2sy 

(7.29) 

= _l_exp [In(x-a)-l]exp [ __ l- Un (x-a) _y)2] 
Sy.f2i 2s: 

1 exp[ -_l_(ln(x-a) _y)2] 
(x-a)sy.f2i 2s: 

A comparison of equation (7.29) with equation (7.1a) shows that b = Y and c = s y . 

7 .1.5 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

The 3-parameter lognormal distribution has 3 parameters a, b, and c which are related to the 
Lagrange multipliers by equations (7.25) to (7.27), which, in turn, are related to the constraints 
by equations (7.9) to (7.11). Eliminating the Lagrange multipliers through these two sets of 
equations, we obtain parameters in terms of constraints. The third equation for parameter 
estimation is obtained by equating (7.21) to (7.24): 

(7.30) 

7.1.6. DISTRffiUTION ENTROPY 

The entropy of LN3 distribution is obtained as follows: 

-2 
lex) = - foo f(x) In f(x)dx = [In(sy.f2i + L] fOO f(x)dx 

u 2 2 u Sy 

+ (1- y) Joo In(x-a) f(x)dx + _1_ Joo (In(x-a))2 f(x)dx 
2 a 2 2 a Sy Sy (7.31) 

-2 
= In (S .f2i) + L 

y 2 2 Sy 

= In (s ";2 1t e) + y 
y 
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Therefore, 

I(x) =I(y) +y (7.32) 

where ley) = In(syV21te). Alternatively, 

lex) = ICy) - E [In\J( ~ )\] (7.33) 

where J(y/x) is the Jacobian and can be expressed as 

Y ay _a_ln_(.:....x_-_a..:...) J(-)=-= 
x ax ax x-a 

(7.34) 

lex) = ley) - E [In\_1_\] 
x-a (7.35) 

= ley) + E [In(x-a)] = l(y) + Y 

which is the same as equation (7.32). 

7.2 Parameter - Space Expansion Method 

7.2.1 SPECIFICA nON OF CONSTRAINTS 

Following Singh and Rajagopal (1986), the constraints for this method are specified by equation 
(7.9) and 

and 

f oo b 
[ -In(x -a) + -In(x -a)] f(x)dx 

a c 2 

b 
= E [-In(x-a) + -In(x-a)] 

c 2 

f oo [ (In(x -a) )2] f(x)dx 
a 2c 2 

= E [(In(x-a))2] 

2c 2 

(7.36) 

(7.37) 
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7 .2.2 DERIVATION OF ENTROPY FUNCTION 

The pdf corresponding to the principle of maximum entropy (POME) and consistent with 
equations (7.9), (7.36), and (7.37) takes the form 

b 
f(x) = exp [-AD -AI-ln(x-a) 

c 2 

+ A In(x-a)-A (In(x-a))2] 
I 2 2c 2 

(7.38) 

where Ao, AI' and A2 are Lagrange multipliers. Insertion of equation (7.38) into equation (7.9) 
yields 

This leads to 

f ~ f(x) = 1 = f~ exp [-AO -AI ~ln(x-a) 
a a c 2 

A2 2 
+ AIln(x-a)--(ln(x-a))]dx 

2c 2 

c{2rt d 2 c 2 
exp (A ) = -- exp (--), 

o {£; 2A2 

bAI 
d=--A -1 

2 I c 

The zeroth Lagrange multiplier is given by 

1 1 
AD = In c + -In(2n) - -lnA2 

2 2 

Also, from equation (7.22) we obtain 

AO = In f~ exp [(-AI~ln(x-a) 
a c 2 

A2 2 
+ AIln(x-a) - -(In(x-a)) ]dx 

2c 2 

Introduction of equation (7.41) in equation (7.39) gives 

(7.39) 

(7.40) 

(7.41) 

(7.42) 
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I(x) 
(7.43) 

A comparison of equation (7.43) with equation (7.J a) shows that Al = -1 and .1..2 = 1. Taking­
logarithm of equation (7.43), one gets 

(7.44) 

The entropy function then becomes 

J(f) 1 1 d 2c 2 
= - -InA + In c + -In(2n) + --

2 2 2 2.1..2 

Al b .1..2 2 
+ - E [In(x-a)] - Al E [In(x-a)] + - E [(In(x-a)) ] 

c 2 2c 2 

(7.45) 

7.2.3 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

Taking partial derivatives of equation (7.45) with respect to AI' .1..2, a, b, and c, and equating each 
derivative to zero, one gets 

BI 2b b c 2 b - = 0 = - -(--1)- + - E [In(x -a)] - E [In( -a)] (7.46) 
BA] c 2 c 2 2.1..2 c 2 

BJ - = 0 = 
BA2 

(7.47) 
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al = 0 = _ Alb E [_1_] + AI E [_1_] _ A2 E [In(x-a)] 
aa c 2 x-a x-a c 2 x-a 

(7.48) 

(7.49) 

al 1 1 2 Alb 2 Alb 2 - = 0 = - + -[2c (--A -1)(--)A b + 2C(--A -1)] ac c 2A2 c 2 I c3 I c 2 I 

HI b 2A2 
- -- E [In(x-a)] - - E [In(x-a))2] 

c 3 2c 3 

(7.50) 

Simplification of equation (7.46) to (7.50) produces 

E [In(x-a)] = b (7.51) 

E [(In(x-a))2] = b 2 + c 2 (7.52) 

E [ In(x -a)] = (b -c 2 ) E [_1_] 
x-a x-a 

(7.53) 

E [In(x-a)] = b (7.54) 

c E [(In(x-a))2] - 2cb E [In(x-a)] = 4b 3 - c 2 (7.55) 

Equations (51) and (54) are the same and equation (7.55) is an identity. Thus, the parameter 
estimation equations are equations (7.51), (7.52), and (7.53). 

7.3 Other Methods of Parameter Estimation 

Three of the most popular methods of parameter estimation are the methods of moments (MOM), 
probability-weighted moments (PWM) and maximum likelihood estimation (MLE). The variants 
of MOM and MLE have also been reported in the literature. To this end we briefly summarize 
these methods. 

7.3.1 REGULAR METHOD OF MOMENTS 

For the regular method of moments (RMOM), the r-th moment of equation (7 .la) about the lower 
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bound 'a' is 

M r
a = fooo (x-a), exp[- {In(x-a)-b}2 dx 

(x-a)c{2TI. 2c 2 
(7.56) 

Let y = In (x - a). Equation (7.56) can be written as 

(7.57) 

M a c 2 
= exp(b + -) \ 

2 
(7.58) 

M a 
2 = exp (2b + 2c 2) (7.59) 

M a = exp (3b + .2. c 2 ) 3 2 
(7.60) 

The moments given by (7.57) can be converted to the moments about the origin by using the 
following expression: 

Therefore, 

a . 
M r _j a' 

o c 2 
M\ =exp(b+-)+a 

2 
c 2 

= exp(2b + 2c 2 ) + 2aexp(b + -) 
2 

Furthermore, 

- c 2 
M\ = X = exp (b + -) + a 

2 

M2 = var(x) = M~ - (M\O)2 = exp(2b + c 2)[exp(c 2 ) - 1] 

(7.61) 

(7.62) 

(7.63) 

(7.64) 

(7.65) 

(7.66) 

For purposes of parameter estimation, it may be useful to recall the relationships between 
characteristics of X and Y. If " , (J2 and G denote mean, variance and skewness of the ""'x x x 
lognormal variate X, and Il y and (J2 y the mean and variance of Y then one can show that 
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Jix = a + exp (Jiy) W 1/2 

2 
Ox = exp(2Jiy) W( W -1) 

Gx = (w + 2) (w _1)112 

where w = exp (J~) . If we let e = (w-l) 1/2, then 

Equation (7.70) can be solved for e expressed (Kite, 1978) as 

B = 1 - B 213 B = ..!.. [_ G + (G 2 + 4)112] 
B1I3' 2 x x 

Therefore, 

2 
Oy = In w 

(7.67) 

(7.68) 

(7.69) 

(7.70) 

(7.71) 

(7.72) 

(7.73) 

(7.74) 

(7.75) 

The quantities Ji x' 0; and G x are for the population of X, but are estimated from a sample of 
size n as: 

n 1 n 
---- - E (XI - flY 
(n-l)(n-2) cl i=1 

x 

n 1 n 3 A n 2 A3 
---- - (E Xi - 3 Jix E Xi + 2n Jix ) (7.78) 
(n-l)(n-2) a3 ;=1 ;=1 

x 
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7.3.2 MODIFIED METHOD OF MOMENTS 

The RMOM is modified to obtain the modified method of moments (MMOM) in estimation of 
was suggested by Cohen and Whitten (1980) who derived the following relationship: 

w(w -1) (7.79) 
(l1x - XI) [..jW - exp (Oy E[ZI])]2 

where Xl is the first order statistic, and E [ Zl 1 denotes the expected value of the first order 
statistic of the standard normal variate for a random sample of size n (Singh et al., 1990). Here 
the "fixed point" method can be used to solve equation (7.79) for w. To that end, let 
u = 0x/ (J.lx - xl) . Rearranging equation (7.79), 

u(..jW - exp (Oy E[Zd» (w - 1 )112 = _____ ..::.-_...:....._ 

..jW 
(7.80) 

or 

8 
u(..jW - exp( 0y E[Zd» 
------'-----, w = 82 + 1 

..jW 
(7.81) 

First, equation (7.80) is solved iteratively for w using a standard numerical method such as the 
Newton-Raphson method. Then equations (7.73) - (7.75) are used to estimate the parameters a, 
J.lyand Oy' 

7.3.3 REGULAR METHOD OF MAXIMUM LIKELIHOOD ESTIMATION 

For the regular maximum lukelihood method (RMLE), the likelihood function of receiving the 
sample data D = { Xl ' x 2 ' • • • , xn} from a TPLN population, given the values of a, b, and c, 
is 

n 

L(DI a,b,c) = IT L(x) (7.82) 
i=1 

Therefore, 

L(DI a,b,c) 

exp[ __ I_{(ln(xl -a) - b 2 + ... + (In(xn -a) - W}l (7.83) 
2c 2 

The MLE method involves finding the values of a, b, c 2 which together maximize the likelihood 
function. If L ( D I a , b, c) is maximal then so is In L ( D I a , b, c) so estimates of a, b 
and c are sought which produce 



96 

a 
- [lnL(Dla,b,c 2 )] = 0 aa 
a 

- [lnL(D I a,b,c 2 )] = 0 
ab 

a - [lnL(Dla,b,c 2 )] = 0 ac 

Equations (7.84) - (7.86) lead to: 

A I n 
1.1 = - L In(x\ - a) 

Y n ;=\ 

a~ = 1. t [In(x; - a) - !1)2 = 1. t [In(x; - a)]2 
n ;=\ n ;=\ 

- [1. t In(x; - a)]2 
n ;=\ 

n _ f.. In (x. - a) 
f(a) = L (x; =ar\ (!1y - a~) L [ I ] 

i=\ ;=\ (Xi - a) 

= 0, a < Xi 

(7.84) 

(7.85) 

(7.86) 

(7.87) 

(7.88) 

(7.89a) 

(7.89b) 

The function, f(a), can have multiple roots. In that case, the value of "a" closest to Xl (the 
lowest value in the sample) is chosen except when n < 30 in which case experience has shown 
that the second root from Xl is the MLE of "a." This is based upon the criterion that the value 
of "a" which results in the closest agreement between Px and x should be chosen (Cohen and 
Whitten, 1980). Hence, the equations for parameter estimation are 

n 

=L 
i=\ 

1 n 
b = - L In (xi-a) 

n i=\ 

(7.90) 

(7.91) 

(7.92) 

Equations (7.90) - (7.92) are nonlinear but can be easily solved numerically for a, b, and c. 

7.3.4 MODIFIED MAXIMUM LIKELllIOOD ESTIMATION 

The modified maximum likelihood estimation (MMLE) method differs from RMLE ill 
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estimation of the parameter a. Cohen and Whitten (1980) derived a function f(a) expressed as 

1 n 1 n 
f(a) = In(x\-a) - - .E In(x;-a) - E[Z\] (-.E [In(x;-a)]2 

n ;=\ n ;=\ 

(7.93) 

or 

(7.94) 

The other two equations (7.87) - (7.88) remain the same. The value of "a" is obtained using an 
iterative numerical method. 

7.3.5 METHOD OF PROBABILITY-WEIGHTED MOMENTS 

The PWM expressions for the LN3 distributions are difficult to get but are derived by Hosking 
(1990) in terms ofL-moments given as follows: 

L1 = a + ex p [,u y + «(j y 2 I 2 ) ] 

erf (xl ../3) exp ( - x2 ) d x 
erf «(jy 12) 

(7.95) 

(7.96) 

(7.97) 

where L; ,i=l,2,3, are the L-moments, and erf (.) Is the error function. An approximate solution 
for parameter estimates (Hosking, 1990) follows: 

(j y = 0.999281 z - 0.006118 z 3 +0.000127 Z5 

Z 
(j (jy 

,uy =In[Lz lerf (T)]--2-

(jZ 
y 

a = L1 -exp[,uy +-2-] 

where z is defined as 

(7.98) 

(7.99) 

(7.100) 
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(7.101) 

cI> (.) = F (.) is the standard normal distribution function. Therefore, cI>-1 (.) = p-l = U = the 
standardized variable. 

7.4 Comparative Evaluation of Estimation Methods 

7.4.1 EXPERIMENTAL DESIGN 

704.1.1 Monte Carlo Samples: To assess the performance ofRMOM, MMOM, RMLE, MMLE, 
and POME parameter estimation methods, Singh et al. (1990) conducted Monte Carlo sampling 
experiments. Their work is followed here. Four TPLN cases, listed in Table 7.1, were 
considered. For each population case, 1,000, 1,500, and 2,000 random samples of size 10, 20, 
30,50,75, 100,200 and 400 were genemted, and then parameters and quantiles were estimated. 
For quantile estimation, X(F) is not expressible in direct form and was obtained numerically, 
where F is the cumulative distribution function. The relative performance of the methods did not 
greatly depend on the number of samples generated. 

Table 7.1 Lognormal population cases considered in the 
sampling experiments (11 = 10). 

Lognormal Coefficient of Coefficient of 
Population Variation (CV) Skewness (G) 

Case 1 0.5 0.5 

Case 2 0.5 1.0 

Case 3 0.5 1.5 

Case 4 0.5 2.0 

Singh et al. (1990) observed that for some Monte Carlo samples generated from the 
TPLN populations, the convergence was not obtained for some parameters and restrictions had 
to be imposed which generally involved parameter "a. n For instance, for RMLE (or MMLE) and 
POME estimation "an < xl' It has been found (Cohen and Whitten, 1980) that to attain proper 
convergence for the other parameters (11, u) in these cases, a must not be less than 
(Ily - l00ox ) and not greater than (Xl -1O~8) : Therefore, samples for which a did not fall 
within this restriction were rejected by the program for RMLE, MMLE and POME estimation. 
Likewise, for moments methods (RMOM, MMOM), the relationship a = Ily - u/ e must hold. 
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From the convergence restriction a ~ (,Ix - 100o),weget e = .01. Sincew = 82 + 1, 
then w ~ 1.0001. Thus, samples where w > 1.0001 were rejected for the MMOM method. 
Similarly, since G x = 83 + 38 = 0.3, for samples with G x 5 .03, the RMOM estimates could 
not be calculated. 

7.4.1.2 Performance Indices: The 2,000 values of estimated parameters and quantiles for each 
sample size and population case were used to approximate standard bias (BIAS), standard error 
(SE), and root mean square (RMSE) for evaluating the performance the performance of the 
parameter estimation mmethods. Following Kuczera (1982a, 1982b), robustness was also used 
to evaluate the methods. Two criteria for identifying a resistant estimator are mini-max and 
minimum average RMSE. Based on the mini-max criterion, the preferred estimator is the one 
whose maximum RMSE for all population cases is minimum. The minimum average RMSE was 
used for the estimator whose RMSE average over the test cases was minimum. The number of 
samples of 2,000 may arguably not be large enough to produce the true values of BIAS, SE and 
RMSE, but was considered sufficient to compare the performance of the estimation methods. 

7.4.2 RESULTS AND DISCUSSION OF MONTE CARLO EXPERIMENTS 

7.4.2.1 Bias in Parameter Estimates: The results of the parameter bias analyses showed that 
in general, RMLE and POME performed consistently in estimating parameter "a" for all sample 
sizes of all population cases. As sample size increased, all methods, as expected, produced less 
bias in "a." Indeed the reduction in bias for each method was two orders of magnitude as sample 
size increased from 10 to 400. For small sample sizes of all population cases, the bias by RMOM 
was the highest, followed by MMLE, that by RMLE was the least, and that by MMOM and 
POME was comparable. For increasing sample sizes MMOM, RMLE and POME tended to be 
comparable. To summarize, RMLE performed very well across all population cases and thus 
appears to tbe the best estimator of "a" in terms of bias. For sample sizes ~ 100, both POME 
and RMOM performed reasonably well and can be used for estimating "a." 

The results of bias in estimators of 11 varied with the sample size and skewness of the 
y 

population considered. For small sample sizes ( n 5 20 ) of populations with G 5 0.5, RMOM 
produced the least bias in Ily and RMLE the highest bias, and the other methods were 
comparable. For the same sizes, the least bias was produced by POME for populations of higher 
G values. With increasing sample size, RMLE and POME took over and produced the least bias, 
and for n > 100, RMLE, was, in general, the best of all the methods. However, POME was the 
best for populations of G ~ 2. 0 . 

The bias in the estimates of ° also varied with sample size and population skewness and 
y 

somewhat mirrored the results of the bias in Ily ' For small sample sizes (n 5 100) and 
Gx 5 .5, RMOM gave the least biased estimators of Oy' POME produced the second best 
estimators of ° y in terms of bias for small samples and the best for n > 100. MMLE produced 
the most biased estimators of 0y for small skewed populations. However, as popUlation 
skewness increased, MMLE and RMLE became the least biased estimators of 0y , especially for 
larger sample sizes (n ~ 50). For the smaller samples, no method demonstrated consistently 
superior results; however MMOM, MMLE and POME generally performed well in these cases. 
It is noted that RMOM estimators of 0y were negatively biased for all sample sizes for G x > .5, 
and MMOE and POME resulted in negative bias for large samples for Gx = 1.5 and were 
negatively biased for all samples for Gx = 2. 

7.4.2.2 Bias in Quantile Estimates: The results of the bias analysis for selected quantile 
estimates showed that for small population skewness( G x 5 .5) RMOM appeared to be the least 
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biased estimators of all quantiles for all sample sizes with the exception of small quantiles 
( T ~ 10) for sample sizes larger than 100. Here T is the return period. For the larger sample 

sizes, MMOM performed well, while RMLE and POME performed similarly for this case. As 
population skewness increased, RMOM estimates became increasingly more biased until they 
were generally the most biased for all sample sizes for case 4. Meanwhile, the MMOM method 
did not deteriorate at the same rate as RMOM and performed well in estimating large quantiles 
(T > 50) for nearly all sample sizes even in case 4 (Gx = 2.0). In general, bias tends to increase 
with increasing quantiles and to decrease as sample size increases. In this regard, POME 
performed very well, particularly for the cases of high population skewness. In fact, POME 
generally showed the least deterioration for larger quantile estimation than any other method for 
all sample sizes in all population cases. RMLE and MMOM also performed well in this regard 
for the cases of high population skewness. In summary, for populations which exhibited small 
skewness (G x ~ .5), ROME generally gave the least biased quantile estimates, while for 
populations with larger skewness, MMOM performed well for the estimation of large quantiles 
and POME performed consistently well for all sample sizes in these cases. 

7.4.2.3 RMSE of Parameter Estimates: The results of the parameter RMSE analysis showed, 
in estimation of parameter "a," RMLE generally exhibited the smallest RMSE over all population 
cases for most sample sizes. In general, the RMSE of "a" decreased for all methods as 
population skewness and sample size increased. MMOM performed well in estimating "a" for 
sample sizes 5. 100. RMOM was generally the worst estimator of "a" in terms of RMSE for 
small samples (n 5. 50) for small population skewness( G x ~ 1.0) and for all sample sizes 
for cases of G x > 1.0. 

The RMSE of the estimators of 11 also varied according to population skewness and 
sample size. In the case of small skewnes; (G x 5. .5), RMOM estimators of Ily exhibited the 
lowest RMSE for samples of size n 5. 20, while POME was superior for 30 5.n~ 75 and RMLE 
was superior for cases of n > 75 with POME comparable. For increasing population skewness, 
MMOM exhibited superior RMSE for the smaller samples (n 5. 100), while RMLE was 
superior for cases of n > 100 for all population cases. However, POME was generally 
comparable as an estimator of 11 in terms of RMSE for these cases. MMLE generally 

y 

performed poorly for all sample sizes over all population cases. 
As in the previous case, the RMSE results with respect to estimators of Ily varied with 

population skewness and sample sizes. Again, for the small population skew case (Gx 5. .5), 
RMOM provided the lowest RMSE estimator of 0y for sample sizes up to 75 where POME took 
over and was superior for the remaining samples. RMLE also performed well for the larger 
samples. Contrary to the previous two cases, RMSE of all estimators of 0y increased slightly 
with increasing population skewness. Again, under increasing population skewness, MMOM 
estima~ors were superior in terms ofRMSE for samples of sizes up to n = 100. As previously, 
POME and RMLE estimators of a were superior for the largest sample sizes (n > 100) in all 
population cases. Also, as in the privious cases, MMLE performed relatively poorly in all cases. 

7.4.2.4 RMSE of Quantile Estimates: The results of the RMSE analysis of selected quantile 
estimates showed that for small sample sizes (n 5. 30), RMOM estimates provided the lowest 
RMSE for quantiles T ~ 100 for all population cases. RMOM estimates were also superior in 
terms ofRMSE for quantiles down to T = SO under smaller population skewness (G x 5. .5). The 
RMSE of quantile estimates generally increased with increasing population skewness and 
increased from the smaller quantiles to the larger. However, the increase in RMSE for case 1 
to case 4 was generally less than 100% for all methods. As in previous cases, RMLE and POME 
generally exhibited the smallest RMSE for large sample sizes(n ~ 100) for small quantiles 
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(T ~ 10) for all population cases. However, MMOM performed well in terms of RMSE 
across all sample sizes and population cases as well. In fact, MMOM was compatible with the 
best quantile estimators in all cases of skewness and sample sizes. 

7.4.2.5 Robustness Evaluation: The relative robustness of different methods of parameter and 
quantile estimation showed the method which performed the best and the worst for the smallest 
and largest sample sizes generated (n = 10, n = 400) for each parameter and selected quantiles 
for all population cases considered. Interestingly, the performance of the parameter estimation 
techniques was relatively insensitive to population skewness. The relative performance of the 
techniques for case 4 was virtually identical to that for case 1. The results clearly illustrated the 
generally superior performance of RMIE, POME, and MMOM for parameter estimation. As 
expected, RMLE performed in a superior manner in terms of BIAS, SE, and RMSE for large 
sample sizes for all parameters. POME, MMOM and RMOM generally performed in a superior 
manner for small samples depending on the parameter being estimated. 

In contrast to the parameter results, the performance of different methods in quantile 
estimation varied somewhat with increasing population skewness. The performances also varied 
with the quantile being estimated and with sample size. For cases of small population skew 
(G ~ 1.0), RMOM was generally superior for estimation of all quantiles under all indices for 
small sizes. As expected, RMIE performed in a superior manner in all cases for large samples 
but generally performed poorly for small samples. As population skewness increased, the 
performance of RMOM for small samples det~riorated at a somewhat faster rate than that of 
MMOM and POME which became superior in terms of BIAS for estimation of larger 
quantiles(T ~ 100) underlargerpopulationskewness(G ~ 2.0). However,RMOMcontinued 
to perform well in terms of SE and RMSE for the larger quantiles in these cases. MMOM 
performed in a superior manner for the smaller quantiles( T ~ 10) for these large skew cases. 
In summary, RMIE performed in a clearly superior manner for quantile estimation under large 
sample sizes for all cases, while RMOM and MMOM were superior for small samples. 

7.4.2.6 Concluding Remarks: The Monte Carlo study revealed that no one method performed 
in a superior manner in terms of bias and RMSE of parameter and quantile estimation across all 
population cases. In general, RMLE and POME performed well in terms of bias and RMSE of 
both parameter and quantile estimation for large sample sizes in all cases. In terms of bias, 
RMOM generally performed well in cases of small sample sizes in both parameters and quantile 
estimation for populations which exhibited small skewness. RMOM also performed well in 
small sample size estimation of ~ and (J and large quantiles (T ~ 100) in terms of RMSE 
in small skew cases. However, RMOM esiimation generally deteriorated for larger sample sizes 
and smaller quantiles. RMOM also generally tended to deteriorate with increasing population 
skewness more rapidly than other methods. The alternative method recommended by Cohen and 
Whitten (1980) (MMOM) did represent an improvement over RMOM in many cases. MMOM 
estimation did not deteriorate as rapidly as RMOM under increasing population skewness and 
sample sizes in terms of both bias and RMSE. Thus, MMOM appeared to be a more robust 
estimator than RMOM. However, the computational difficulties encountered in using this 
technique were apparently increased relative to RMOM. For some sample sizes, a significant 
number of samples were rejected for this method. These rejections may reduce the reliability of 
the results of the methods for which significant numbers of samples were rejected. 

The other alternative recommended by Cohen and Whitten (1980) (MMLE) did not 
generally represent an improvement over RMLE. In addition, the results demonstrated that this 
method represented the worst computational difficulties in terms of convergence of any of the 
techniques compared. For the cases of small sample sizes· under large population skewness 
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(G x > .5), MMOM and POME appeared to be the superior estimators in terms of both bias and 
RMSE. In fact, in terms of consistent performance in the largest number of cases of both sample 
size and population skewness, these two methods appeared to be the most robust of the 
techniques compared. 

7.4.3 APPLICATION TO FIELD DATA 

Singh and Singh (1987) applied MOM, MLE and POME to annual peak discharge data of six 
selected rivers. Pertinent characteristics of the data are given in Table 7.2. These data were 
selected on the basis of length, completeness, homogeneity and independence of record. Each 
gaging station had a record of more than 30 years. The parameters estimated by the three 
methods are summarized in Table 7.3. For two sample gaging stations, a comparison of observed 
and computed frequency curves is shown in Figures 7.1 and 7.2. The observed frequency curve 
was obtained by using the Gringorton plotting position formula. 

Table 7.2 Pertinent data characteristics of six selected rivers. 

River gaging Drainage Length of Mean St. dev. Skewness Kurtosis 
station area record discharge (cu. mls) (Cs ) (K, ) 

(sq.km) (years) (cu. mls) 

Comite River 1,896 38 315.7 166.8 0.54 2.77 
at Comite, LA 

Amite River at 4,092 34 745.1 539.5 0.71 3.03 
Amite, LA 

St. Mary River at 
Still Water, Nova 1,653 59 409.5 147.9 1.42 6.25 
Scotia 

St. John River at 
Ninemi1e Bridge, 1,890 32 699.0 223.7 0.41 3.01 
ME 

Allagash River at 
Allagash, ME 1,659 51 438.8 159.8 0.71 3.30 

Fish River near 
Fort Kent, ME 890 53 241.1 71.4 0.43 3.22 

Although the differences between parameter estimates were not large in any case, the 
parameter estimates obtained by the POME and MLE methods were most similar. Consequently, 
their corresponding frequency curves were also closer. POME did not require the use of the 
coefficient of skewness, whereas MOM did. In this way, the bias was reduced when POME was 
used to estimate the parameters of TPLN distribution. 

To compare these three methods further, relative mean error (RME) and relative absolute 
error (RAE) were computed as given in Table 7.4. With a couple of exceptions, notably the 
RME values associated with the Comite River and Amite River, RME and RAE values were 
essentially the same for the various data sets. This implies that the three procedures, MOM, 
MLE, and POME, provided equivalent results. 
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MLE, and POME, provided equivalent results. 

Table 7.3 Parameter estimates by MOM, MLE and POME methods for six selected rivers 
- 2 2 (b = y, c = Sy) 

River MOM MLE POME 

Gaging Station a I b I c2 a I b I c2 a I b I c2 

Comite River -692.1 6.90 0.027 -692.0 6.90 0.0256 -692.1 6.90 0.0256 
at Comite, LA 

Amite River -6879.3 8.93 0.0023 -6879.3 8.93 0.0022 -6879.8 8.93 0.0023 
at Amite, LA 

St. Mary River 
at Still Water, 60.05 5.97 0.1648 60.05 5.78 0.1587 60.05 5.78 0.1591 
Nova Scotia 

St. John River 
at Ninemille -1123.8 7.50 0.0149 -1123.8 7.50 0.0143 -1123.8 7.50 0.0143 
Bridge, ME 

Allagash River 
at Allagash, ME -294.3 6.57 0.0464 -294.32 6.57 0.0442 -294.3 6.57 0.0446 

Fish River near -513.61 6.62 0.0089 -513.63 6.62 0.00872 -514.5 6.62 0.0090 
Fort Kent, 
ME 

Table 7.4 Relative mean error and relative absolute error by MOM, MLE and POME 
methods for six selected rivers. 

River RME RAE 

Gaging station MOM I MLE I POME MOM I MLE I POME 

Comite River at Comite. LA 2.82 2.35 2.35 7.40 7.54 7.54 

Amite River at Amite. LA 7.29 6.60 7.19 13.09 13.32 13.12 

St. Mary River at Still Water. 
Nova Scotia 0.12 0.12 0.12 2.68 2.59 2.59 

St. John River at Ninemile 
Bridge, ME 0.23 0.22 0.22 3.67 2.54 3.56 

Allagash River at Allagash, 
ME 0.18 0.18 0.18 3.20 3.20 3.20 

Fish River near Fort Kent. 
ME 0.18 0.18 0.18 3.20 3.20 3.20 
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CHAPTERS 

EXTREME VALUE TYPE 1 DISTRffiUTION 

The extreme value type 1 (BY1) distribution is one of the most popularly used distributions for 
frequency analysis of extreme values of meteorologic or climatic and hydrologic variables, such 
as floods, rainfall, droughts, etc. This distribution was derived by Fisher and Tippett (1928) as 
a limiting form of the frequency distribution of the largest or smallest of a sample. In a series of 
papers Gumbel (1941a, b, 1942a, b, 1948) derived the BYI distribution for flood flows and 
applied it to frequency analysis of floods, droughts, and meteorological data. Gumbel (1958) 
published a treatise on statistics of extremes, which contains a comprehensive treatment of BY 1 
distribution. Bardsley and Manly (1987) examined the transformations under which non-Gumbel 
distributions of annual flood flow maxima would converge to the Gumbel distribution. Smith 
(1986) presented a family of statistical distributions and estimators based on a fixed number 
(greater than one) of the largest annual events. Jenkinson (1955) found a general solution of the 
function equation derived by Fisher and Tippett (1928) for extreme values and showed that the 
Gumbel distribution was a special case of the general solution. Singh et al. (1986) derived this 
distribution using the principle of maximum entropy. AI-Mashidini et al. (1978) presented a 
simplified form of BY 1 distribution for flood estimation. 

Hershfield and Kohler (1960) made an empirical appraisal of the Gumbel distribution 
using thousands of station years of rainfall data. Their results showed that this was an acceptable 
distribution for predicting the probability of occurrence of extreme values of rainfall. Stol (1971) 
applied it to analyze daily, monthly and annual rainfall data. Lambert and Li (1994) applied BYI 
distribution to evaluate risk of extreme events for strictly monotonically increasing univariate­
loss functions in water resources, where uncertainties about the distributions of precipitation, 
runoff, and wind and wave magnitude are widely found. Coulson (1966) prepared tables for 
computing and plotting flood frequency curves using BY 1 distribution. Weiss (1955) developed 
a nomogram for determining values for various return periods. Majumdar and Sawhney (1965) 
compared BY 1 distribution with lognormal and Foster's type 3 distributions for extreme values. 
The distribution yielded good estimates for return periods up to 1000 years when the coefficient 
of variation was less than 0.5. Shen et al. (1980) compared BYI and log-Pearson type 3 
distributions. They noted that BYI could lead to very large underestimates of extreme events in 
those cases where BY 2 distribution was appropriate. Reich (1970) analyzed annual flood peaks 
from 26 Pennsylvanian watersheds (smaller than 200 square miles) using BY 1, log EY 1 and log­
Pearson type 3 distributions. Consistent overestimates of long return period extremes resulted 
from log EYI distribution. 

The EY 1 distribution is a two parameter distribution. The two parameters have been 
estimated using a number of methods. Phien (1987) reviewed four methods of parameter 
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estimation, including methods of moments (MOM), maximum likelihood estimation (MLE), 
principle of maximum entropy (pOMB), and probability weighted moments (PWM). He noted 
that PWM was the best in terms of bias and MLE the best in terms of the root mean square error 
and efficiency. By all criteria, POME was the second best and followed MLE more closely than 
PWM. Fiorentino and Gabriele (1984) proposed modifications to MLE for reducing bias in 
parameter and quantile estimates. Lettenmaier and Burges (1982) showed that the parameter and 
quantile estimates were much improved if Gumbel's m was set to infinity, rather than the sample 
length. Using bias and efficiency, Lowery and Nash (1970) compared four parameter estimation 
methods: moments, regression, maximum likelihood, and Gumbel's fitting method. They found 
that next to the method of maximum likelihood the method of moments was the most accurate. 
J owitt (1979) estimated the EV 1 parameters using the principle of maximum entropy. Houghton 
(1978) proposed the method of incomplete means for parameter estimation. 

Landwehr et al. (1979) compared PWM with MLE and MOM. While PWM produced 
unbiased estimates of Gumbel parameters, MLE produced minimum variance estimates. In 
general, MLE was the most efficient of the three methods. Raynal and Salas (1986) analyzed 
six estimation methods for EVI and its generalized version: MOM, MLE, PWM, least squares 
(MOLS), and mode and interquartile range method (MIR). On the whole, PWM and MLE were 
judged to be the best methods. Jain and Singh (1987) compared seven methods of parameters: 
MOM, MLE, POMB, MOLS, PWM, mixed moments (MIX), and incomplete means (MIM). 
They found that MLE, POMB, MOM, and PWM were adequate for general use, although POMB 
or MLE would be preferable. Arora and Singh (1987) made a statistical comparison ofEVI 
estimators using Monte Carlo experimentation: MOM, MLE, PWM, POMB, MIX, MOLS and 
MIM. In addition, they made a bias correction to the MOM-quantile estimator. MLE provided 
the most efficient quantile estimates followed closely by POMBo For small samples, PWM and 
MOM performed comparably in efficiency of estimating quantiles. PWM resulted in nearly 
unbiased quantile estimates. Serial correlation in samples resulted in deterioration of the 
performance of all estimators. Fill and Stedinger (1995) analyzed the power of two L-moment 
and probability plot correlation coefficient goodness-of-fit tests for the EV 1 distribution and the 
impact of autocorrelation. They recommended use of unbiased L moment estimators for 
goodness-of-fit tests and distribution selection, as well as parameter estimation. Phien and 
Arbhabhirama (1980) evaluated the effect of the selection of plotting position formulae and class 
division schemes on goodness-of-fit tests for EVI distribution using annual flood and annual 
maximum daily rainfall data. They found that the plotting position formulae had a minor 
influence on the tests while the class division had a pronounced effect on the chi-square test. 
They recommended MLE for parameter estimation. 

A random variable X is said to have an extreme value type 1 (EVl) or Gumbel 
distribution if its probability density function (pdf) is given by 

f(x) = a exp [-a(x-b) _ e·a(x-b)] (8.1a) 

where a > 0 and - 00 < b < x are parameters. Parameter a ia a concentration parameter and 
parameter b is a measure of central tendency. Thus, the EVI distribution is a two-parameter 
distribution. Its cumulative distribution function (cdf) can be expressed as 

F(x) = exp [_ e-a(x-b)] (8.1b) 

Let y be the reduced variate defined as 
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y=a(x-b) (8.2a) 

Then equation (8.1 a) an be expressed in terms of y as 

f (x) = a exp [ - y - exp (- y)] (8.2b) 

and equation (8.lb) as 

F (y ) = ex p [ - ex p ( - y)] (8.2c) 

The EVI distribution has a constant coefficient of skew of approximately 1.14 and a constant 
coefficient of kurtosis of approximately 5.40. For a return period T, the reduced variate YT can 
be expressed from equation (8.2c) as 

T -I 
Yr =-In[ -In--] 

T 

where T is defined as lI[I-F]. 

8.1 Ordinary Entropy Method 

8.1.1 SPECIFICA nON OF CONSTRAINTS 

Taking logarithm of equation (8.1) to the base 'e', one gets 

In f(x) = In a - a(x-b) - exp [-a(x-b)] 

Multiplying equation (8.3) by [- f(x)] and integrating from - 00 to 00 yield 

-r-~ f(x) In f(x)dx = - [In a + ab] r-~ f(x)dx + a r-~ x f(x)dx 

+ exp (ab) r-~ exp (-ax) f(x)dx 

(8.2d) 

(8.3) 

(8.4) 

From equation (8.4), the constraints appropriate for equation (8.la) can be written (Singh et al., 
1985, 1986) as 

r~ f(x)dx = I 

r-~ x f(x)dx = x 

r-~ exp (-ax) f(x)dx = E [exp (-ax)] 

Equation (8.5) can be verified as 

r-~ f(x)dx = a r-~ exp [-a(x-b) - e-a(xb) ]dx 

(8.5) 

(8.6) 

(8.7) 

(8.8) 



Let a(x-b) = y. Then dy = a dx. Hence. 

r _ f(x)dx = a r _ exp [- y - e'>'] dy = roo exp (-y) exp (- e-Y) dy (8.9) 
a 

Let z = exp (-y). Then 

dz dz - = -exp (-y); dy = - -
dy z 

r- f(x)dx = - JOw z exp (-z) dz = JOoo z exp (-z) dz = 1 
z 

8.1.2 CONSTRUCTION OF ZEROTH LAGRANGE MULTIPLIER 

(8.10) 
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The least-biased pdf based on POME and consistent with equations (8.5) - (8.7) takes the form: 

(8.11) 

where Ao• AI' and A2 are Lagrange multipliers. 
Inserting equation (8.11) into equation (8.5) gives 

(8.12) 

From equation (8.12) the partition function can be written as 

(8.13) 

(8.14) 

Substitution of the above quantities in equation (8.13) yields 
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(8.15) 
(A f(A/a) 

2 F (A/a)-' ( )d JoY exp -y y = 
a 

The zeroth Lagrange multiplier AD is given as 

(8.16) 

The zeroth Lagrange multiplier is also obtained from equation (8.13) as 

(8.17) 

8.1.3 RELATION BETWEEN LAGRANGE MULTIPLIERS AND CONSTRAINTS 

Differentiating equation (8.16) with respect to Al and A2, respectively, one gets 

(8.18) 

(8.19) 

Also, differentiation of equation (8.17) with respect to Al yields 

3Ao r: xexp [- A,X - A2 e -axjdx 

3A, r: exp[ - A,X - A2e -ajdx (8.20) 

-r: xf(x)dx = - x 

Similarly, differentiation of equation (8.17) with respect to A2 yields 



aAo r: e -uxexp [ - A\ X - A2e -ax]dx 

aA2 r: exp[ - A\X - A2e -a]dx (8.21) 

-r: e -ax f(x)dx = - E [e -ax] 

Equating equations (8.18) and (8.20), as well as equations (8.19) and (8.21), one obtains 

(8.22) 

(8.23) 

8.1.4 RELATION BETWEEN PARAMETERS AND LAGRANGE MULTIPLIERS 

Substitution of equation (8.16) in equation (8.11) gives 

f(x) 
A\ A\ 

= exp[lna+-InA2 - InI'(-)-A\x-A2 e ux 

a a 
a(A2l,/a 
--=-A-exp [ - A\ X - A2 e -ax] 

I'(-2.) 
a 

A comparison of equation (8.24) with equation (8.Ia) shows that 

8.1.5 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

(8.24) 

(8.25) 

(8.26) 
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The EV1 distribution has two parameters a and b which are related to the Lagrange multipliers 
by equations (8.25) and (8.26) which, in turn, are related to the constraints by equations (8.22) 
and (8.23). Eliminating the Lagrange multipliers between these two sets of equations yields 
relations between parameters and constraints, 

x = b _ 0.5772 
a 

(8.27) 
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8.1.6 DISTRIBUTION ENTROPY 

The entropy of the EV1 distribution can be expressed as follows: 

lex) = - Ina r:f(x)dx + a r: xf(x)dx 

-ab r:f(x)dx + r: exp[ -a(x-b)]f(x)dx 

'= - Ina+aX-ab + r: exp[-a(x-b)]dx 

w = r: exp[ -a(x -b)]aexp[ -a(x -b)- e -a(x-b)]dx 

Let a(x-b) = y. Then dy = a dx. Hence, equation (8.30) becomes 

w = f~exp[-y] a exp[-y-e-y]dy 
-~ a 

= r: exp[ -2y-e -Y]dy = r: exp[ -2y]exp[ -e -Y]dy 

Let e·Y = z. Then, 

Z 2 = e -2y = liz = - e -Y = - z 
dy 

Therefore, dy = - dzlz. 

W = - fOz2 e -t dx = r~ze-tdx 
~ z Jo 

= fo~z2-1e-tdx = r(2) = 1 

(8.28) 

(8.29) 

(8.30) 

(8.31) 

(8.32) 
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8.2 Parameter - Space Expansion Method 

8.2.1 SPECIFICATION OF CONSTRAINTS 

lex) = - Ina +aX -ab + 1 

= In.!..+aX-ab+lne= In(.!)+a(x-b) (8.33) 
a a 

For this method, the constraints, following Singh and Rajagopal (1986), are given by equation 
(8.5) and 

r:a(x-b)f(x)dx = E [a(x-b)] (8.34) 

(8.35) 

8.2.2 DERN ATION OF ENTROPY FUNCTION 

The pdf corresponding to the principle of maximum entropy (POME) and consistent with 
equations (8.5), (8.34), and (8.35) takes the form 

(8.36) 

where A.o, A. I, and A.2 are Lagrange multipliers. Insertion of equation (8.36) into equation (8.5) 
yields 

J= r (~) 
exp(-\)= _exp{-~a(x-b)-~exp[-a(x-b)]}dx= a~A, (8.37) 

The zeroth Lagrange multiplier is given by equation (8.37) as 

(8.38) 
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Also from equation (8.37), the zeroth Lagrange multiplier is given as 

Introduction of equation (8.38) in equation (8.36) gives 

A comparison of equation (8.40) with equation (8.1a) shows Al = Az = 1. 
Taking minus logarithm of equation (8.40) produces 

- Infix) = -In a - Al In Az + In r(AI) 
+ Ala(x-b) + A2 e-a(x-b) 

(8.39) 

(8.40) 

(8.41) 

The entropy function of the EV1 distribution is obtained by multiplying equation (8.41) by f(x) 
and integrating the product from - 00 to + 00: 

l(j) = - In a-AI In Az + In reAl) 
+ Al E [a(x-b)] + A2 E [e-a(x-b)] 

(8.42) 

8.2.3 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

Taking partial derivatives of equation (8.42) with respect to AI' Az, a, and b, separately, and 
equating each derivative to zero results in 

(8.43) 

AI + E [e -a(x-b)] 
A2 

(8.44) 

al 1 
- = 0 = - - + Al E [(x-b)] 
aa a (8.45) 

- A2 E [eu(x-b)(x-b) 

(8.46) 



where 'P is the digamma function. Simplification of equation (8.43) to (8.46) leads to 

E [a(x-b)] = - 'PO) (8.47) 

E [e -a(x-b)] (8.48) 

E [a(x-b)] - E [a(x-b)ea(x-b)] (8.49) 

E [e -a(x-b)] (8.50) 

Equations (8.48) and (8.50) are the same and equation (8.49) is an identity. Thus, the 
parameter estimation equations are equations (8.47) and (8.48). 

8.3 Other Methods of Parameter Estimation 
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The two parameters a and b in equation (8.1) and (8.2) can be estimated by using anyone of the 
standard methods. Some of these methods are briefly outlned here. In practice, these parameters 
are estimated from sample statistics. These then lead to equations for fitting the EY1 distribution 
to the sample data. 

8.3.1 METHOD OF MOMENTS 

The method of moments (MOM) is one of the most popular methods for estimating parameters 
a and b (Lowery and Nash, 1970; Landwehr, et al., 1979). Since there are two parameters, only 
the first two moments of the distribution are needed. Gumbel (1958) has shown that the mean Il y 

and standard deviation ay of y can be expressed as 

J1 y = r (Euler's cons tan t = 0.5772 ) (8.51a) 

and 

(8.51b) 

If Ilx and ax are the mean and standard deviation of X, then from definition of Y we get: 

r 11 =b +-
x a (8.52a) 
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or 

1C 
(j --­

x- a .J6 

Y (jx.J6 
b = Jl - ---'--

x 1C 

1C 

a=(jx.J6 

(8.52b) 

(8.53a) 

(8.53b) 

The mean and standard deviation of X, flx and ax' are replaced by the sample mean and standard 
deviation (almost unbiased), x and Sx' which for a sample of size n are defined as 

n 

X = L xJn 

S = [L(x - x)2 / (n _1)]05 
x I 

Then equations (8.53a) and (8.53b) become 

a = 1.28255 / Sx 

b = x - 0.450041 Sx 

Thus, the fitting equation for the EVI distribution is 

xT=x+K(T)Sx 

K(T) = - [0.45 + 0.7797 In (-In(l-l.))] 
T 

(8.54a) 

(8.54b) 

(8.55a) 

(8.55b) 

(8.56a) 

(8.56b) 

where K(T) is the frequency factor (Chow, 1953) and T is the recurrence interval. Clearly, K(T) 
is analogous to the reduced variate which is a function of T only. Thus, equation (8.56b) can also 
be expressed as 

.J6 
K=--(y-y) 

1C T 

where YT is the value of y corresponding to T. 

8.3.2 METHOD OF MAXIMUM LIKELIHOOD ESTIMATION 

(8.56c) 

For the method of maximum likelihood estimation (MLE), the parameters are estimated such that 
they maximize the likelihood of obtaining the sample drawn from the EVl population. Kimball 



(1949) derived the MLE estimators as 
n 

L Xi exp (- "Xi) 
1 = X _ ..:,.i=..:..I ____ _ 

a n 

L exp( - axi ) 
i=1 

b = .! In [ ___ n __ 
a n 

L exp(ax) 
i=1 

(8.57) 

(8.58) 

The fitting equation can then be obtained by inserting a and b through equation (8.2d). 

8.3.3 METHOD OF LEAST SQUARES 
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The method ofleast squares (LEAS) estimates parameters a and b by considering equation (8.56a) 
as a linear regression of x on K where Jlx and a x are treated simply as parameters of the linear 
relationship. This requires an a priori estimate of T (and hence of K from equation (8.56b» which 
is usually done by arranging the data in descending or ascending order of magnitude, choosing 
an appropriate plotting position formula, and assigning a return period to each event accordingly. 
By using equation (8.1b), these parameters can be estimated as 

n n n 

n L SiXi - LXi L Zi 
i=1 i=1 i=1 

n 
(8.59) 

{Lxi - nLx/ 
i=1 

n 

L Zi 
- i=1 b=x+-- (8.60) 

na 

where Z i = In [ -In ( F (Xi) 1 is obtained for each data point from the plotting position 
formula which defines the cumulative probability of non-exceedance for each data point xi' 

8.3.4 METHOD OF INCOMPLETE MEANS 

The incomplete means method CICM) uses means calculated over only parts of the data range. 
By arranging the sample in ascending order Xl ' x 2 ' • • • , x n ' first the sample mean .( x) is 
calculated. x is then used to divide the sample into disjointed sets. The mean of the upper set 
having values greater than x is calculated and called first incomplete mean Xl' Similarly, the 
mean of all observations above Xl is calculated and is the second incomplete mean x2 ' and so 
on. For the EV 1 distribution, the first two imcomplete means are 

XI = b- n [JlnJ_J2InJ 
a{n-n) 2 

J 3 lnJ J 4 lnJ 
+-----

6 24 
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(8.61) 

The sum of terms containing In J can be simplified as In J ( 1 - e -J) . Therefore, 

n J2 
x; = b - [In J(1 -e -I) - J + -

a(n-n) 4 
(8.62) 

where J = In (n / n i ) , n is the size of the sample and n i the number of observations 
corresponding to the lower limit of the range on which the incomplete mean is calculated. Xl 

and )(2 are then used to calculate parameters a and b. 

8.3.5 METHOD OF PROBABILITY WEIGHTED MOMENTS 

The probability weighted moments (PWM) method requires expressing the distribution function 
in inverse form which for the EVI distribution is 

x = b - 1. In [ -In F(x) ] 
a 

Following Landwehr, et al. (1979), the parameters a and b can be given as 

b = x _ .5772 
a 

:x - 2MJOI 

a In 2 

where MJOI is the first probability weighted moment defined as 

1 n 
M J01 = Lx.(n-i) 

n(n -1) ;=1 I 

(8.63) 

(8.64) 

(8.65) 

(8.66) 

This method produces unbiased estimates of parameters a and b if the sample is drawn 
from a purely random population, and less bias for a serially correlated case than the MOM and 
MLE methods. 

8.3.6 METHOD OF MIXED MOMENTS 

The method of mixed moments (MIX) uses the first moment of the EVI distribution and the first 
moment of its logarithmic version. The parameters a and b are given by 

exp (ab) 

a = 
1.28255 

Sx 

- a 2 2 
+ax+-[S +7] 2 x 

(8.67) 

(8.68) 
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where S; is the variance ofx. Equation (26) is the same as equation (8.53) and equation (8.68) 
is derived Jain and Singh (1986). 

8.4 Evaluation of Parameter Estimation Methods Using Field Data 

8.4.1 ANNUALFLOODDATA 

Jain and Singh (1987) compared the aforementioned methods of parameter estimation using 
instantaneous annual flood values for fifty-five river basins with drainage areas ranging from 104 
to 2,500 kIn 2. Their work is followed here. These data were selected on the basis of length, 
completeness, homogeneity, and independence of record. The gaging stations were chosen 
because the length of record was continuous for more than 30 years. Each of the fifty-five data 
sets was tested for homogeneity by using the Kruskal-Wallis test (Seigel, 1956) and the Mann­
Whitney test (Mann and Whitney, 1947), as well as for independence by the W ald-W olfowitz test 
(Wald and Wolfowitz, 1943) and the Anderson test (Anderson, 1941). In each case, the sample 
was found homogeneous and independent. Parameters a and b were estimated by each method 
for each data set. Observed and computed frequency curves for two sample gaging stations are 
plotted in Figures 8.1 - 8.3. 

8.4.2 PERFORMANCE CRITERIA 

Two criteria were used for comparing the seven methods of parameter estimation. These have 
also been used by Benson (1968) and by Bobee and Robitaille (1977). The first criterion is 
defined as the average of relative deviations between observed and computed flood discharges for 
the entire sample, with algebraic sign ignored. 

D =1. E I G(T) 1*100 
a n (8.69) 

in which 

(8.70) 

where Xo and Xc are observed and computed flood values respectively for a given value of 
return period T. 

The other criterion is the average of squared relative deviations: 

Dr = 1. E (G(T»2*loo (8.71) 
n 

Statistics D a and Dr are objective indexes of the goodness of fit of each method to sample data. 
The observed flood discharge corresponds to a return period which was computed by using the 
Gringorton plotting position formula (Adamowski, 1981), 

T = (n + 0.12)/(m - 0.44) (8.72) 

in which m is the rank assigned to each data point in the sample with a value for one for the 
highest flow, two for the second highest flow and so on, with n for the lowest value. 

These criteria were computed using each method of parameter estimation for each sample. 
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The seven methods were ranked for all the gaging stations according to the values of D a and Dr 

on a scale of 1 to 7, with one being the best method. Table 8.1 ranks the seven methods according 
to D a' Clearly, the MLE method was the best of all, followed by the POMB, PWM, MOM, MIX, 
and the ICM methods in descending order of the performance. The poor performance of the ICM 
is not surprising since the fIrst moment is computed over parts of the sample only. The MIX 
method did not do well for the EV1 distribution because it is based on the fIrst moment only. The 
MLE, POMB and PWM methods were comparable. The MOM and LEAS methods worked well 
as long as the sample skewness was within one standard deviation of the distribution skewness. 

Table 8.1 Ranking of the methods of parameter estimation for 55 gaging stations by absolute 
relative deviation Da (on a scale of 1 to 7 with 1 being the best method). 

Method I Number of Gaging Stations Receiving Ranking 

2 3 4 5 6 7 

MOM 6 5 4 28 12 0 0 

MLE 38 5 4 5 2 0 

PWM 4 9 28 9 3 0 2 

POME 5 33 13 2 2 0 0 

LEAS 2 2 4 8 18 21 0 

MIX 0 2 17 19 15 

ICM 0 0 2 13 38 

Table 8.2 Ranking of the methods of parameter estimation for 55 gaging stations by mean 
square deviation Dr (on a scale of 1 to 7 with 1 being the best method) 

Method I Number of gaging stations receiving ranking 

1 2 3 4 5 6 7 
MOM 2 2 6 15 30 0 0 
MLE 43 7 4 0 0 1 0 
PWM 4 5 32 8 4 0 2 
POME 5 39 8 2 0 0 0 
LEAS 1 1 3 10 8 31 1 
MIX 0 0 2 19 11 11 11 
ICM 0 0 0 1 12 12 40 

The ranking of the seven methods according to Dr is given in Table 8.2. The MLE 
method is the best of all, followed by POMB, PWM, MOM, MIX and ICM methods in descending 
order of their performance. Again, the previous conclusions hold. It should, however, be pointed 
out that the differences between MLE, POMB, MOM and PWM were not too great and, therefore, 
these methods could be considered comparable for practical purposes. 
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8.S Evaluation of Parameter Estimators Using Monte Carlo Experiments 

Arora and Singh (1987) estimated extreme value type 1 distribution parameters and quantiles by 
methods of moments, maximum likelihood estimation, probability weighted moments, entropy, 
mixed moments, least squares and incomplete means for Monte Carlo samples generated from two 
sampling cases: purely random process and serially correlated process. The performance ofthese 
estimators was statistically inter-compared. Additionally, a bias correction was made to the 
method of moments-quantile estimator. The corrected estimator provided nearly unbiased 
quantile estimates even for small samples and high non-exceedance probabilities. The work of 
Arora and Singh (1987) is essentially an extension of the one by Landwehr and Matalas (1979), 
where they used sampling experiments to compare the method of probability weighted moments 
with the method of moments and maximum likelihood estimation in two cases: purely random 
samples and serially correlated samples. Arora and Singh (1987) made a comprehensive 
evaluation by including all methods that were apparently available to that date. Additionally, they 
also addressed the question of bias correction for method of moments-quantile estimation. The 
MOM method has been widely used, owing to its simplicity. However, as investigated by 
Matalas, et al. (1979) and Lettenmaier and Burges (1982) among others, and also corroborated by 
this work, this estimator yielded biased estimates of the quantile. 

Usually, selection ofthe best estimator is governed by the type ofthe loss function which 
is a measure of the loss resulting from over or under-design. In certain situations of design, the 
loss function is minimized by least squares estimator. Moreover, the bias corrected moment 
estimator, if not accompanied by a significant worsening of the mean square error (MSE), can 
prove to be useful in regional estimation procedure where the possible increase in the variance is 
made insignificant by the larger sample size. Sampling experiments were used to arrive at a 
practically unbiased moment-quantile estimator. This bias corrected estimator yielded nearly 
unbiased estimates of quantiles, even for samples of small size. Moreover, it did not entail any 
practical worsening of MSE. Indeed, as is shown by simulation, the MSE values obtained from 
the bias-correction estimator were close to those from the uncorrected estimator. 

8.5.1 ANALYSIS 

The inverse form of equation (8.1 b) is given by 

x ( F) = b _ In (-In F) 
a 

(8.73) 

where x (F) denotes the quantile of cumulative probability F. For sample sizes n = 5, 10, 15,20, 
30, 50, 100, parameters a and b were estimated by the methods of moments (MOM), maximum 
likelihood estimation (MLE), probability weighted moments (PWM), entropy (POME), mixed 
moments (MIX), least squares (LEAS), and incomplete means (ICM). The quantiles x (F), for F 
= 0.05, ... ,0.99, were then calculated from equation (8.73). 

Let § denote an estimate of e € (a, b, x ( F) ). e is a random variable whose 
distribution function depends upon sample size, the method of parameter estimation, and of 
course, the distribution ofthe sample itself. The performance statistics of e are given as follows: 

Bias, BIAS (e) = e - E ( e ) (8.74) 

(8.75) 
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Mean Square Error, MSE (8) = E (e - 8) 2 

= BIAS2 (8) + STD 2 (8) (8.76) 

These statistics present a good picture of the relative performance of various estimators 
of e. They were estimated through Monte Carlo sampling experiments, Le., through generation 
of a large number of pseudo-random samples for: (1) purely random process (independent and 
identically distributed Gumbel random variables), and (2) serially correlated process (with the ftrst 
order serial correlation coefftcient of 0.5). 

On the basis of N Monte Carlo samples of size n, the statistics of 8 , viz, equations (8.74) -
(8.76) were estimated as: 

N 

STD 2 (8) .. E 
i=l N - 1 

BIAS (8) .. e - ].1 (8) 

MSE (8) '" BIAS 2 (8) + STD 2 (8) 

(8.77) 

(8.78) 

(8.79) 

(8.80) 

These estimates were expected to be very close approximations to the theoretical values owing 
to the large value ofN (= 50,000 for n = 5, .... ,100, and, = 10,000 for n = 1000). 

The mean square error of all methods relative to that of MLE was compared using the 
relative efftciency deftned as: 

EFF (8) 
MSE (8 I MLE) (8.81) 

MSE (8 lather method) 

A value ofEEF ( 8) < 1 implied that the method under consideration was less efftcient (Le., had 
higher mean square error) compared to MLE and vice versa. 

8.5.2 PERFORMANCE STATISTICS OF PARAMETER AND QUANTn.,E ESTIMATORS 

8.5.2.1 Case 1: Parameter Estimates for a Purely Random Process: The MIX and ICM methods 
were prima-facie rejected as unreliable estimators of Gumbel parameters. MIX, while performing 
reasonably efftciently for estimation of a, failed in providing even a moderately biased estimate 
of b, and thus resulted in highly inefficient estimate of b. ICM failed to provide a satisfactory 
estimate for either a or b as reflected by its very high bias and standard deviation of a and high 
standard deviation of b. 

Of the remaining five methods, the bias of a showed the following trend: 
MLE > POME > MOM > PWM > LEAS, for n = 5, 10 
MOM > MLE > POME > PWN > LEAS, for n = 15 - 50 
MOM > MLE > POME > LEAS > PWM, for n = 75, 100 
LEAS > others , for n = 1000 
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The standard deviation of a compared as: 
MLE > POME > MOM > PWM 
MOM > PWM > MLE > POME 
MOM > PWM = LEAS > POME 
MOM > LEAS > PWM > POME 

The efficiency of a compared as: 

> LEAS, 
> LEAS, 
> MLE, 
> MLE, 

forn = 5 
forn = 10 
for n = 15 
forn > 20 

LEAS > PWM > MOM > POME > MLE, for n = 5 
LEAS > PWM > POME > MLE > MOM, for n = 10, 15 
MLE > POME > PWM > LEAS > MOM, for n > 20 

where '>' means that the method on the left hand side of > has a bigger statistic (bias, standard 
deviation, or efficiency) then the method on the right hand side. 

From the above trends, it appeared that for rather small samples (n ~ 15) , LEAS was 
the preferred method for estimating a. The results also revealed that as n increased, the efficiency 
of estimating a by POME remained close to 1.00, while the efficiency from other methods reduced 
considerably. In estimating b, PWM provided practically unbiased estimates. Analyzing the bias, 
standard deviation and the efficiency in much the same way as for a, it was easily concluded that 
PWM provided superior estimates of b for the entire sample range considered. 

8.5.2.2 Quantile Estimates: PWM provided unbiased quantile estimates for all n and F. MOM 
provided estimates with lower bias than MLE and POME. POME resulted in slightly less bias 
than MLE, while LEAS produced more bias than MLE for all n except for n = 5. MIX and ICM 
again failed to provide satisfactory estimates of quantiles compared to other estimators because 
their lower bias was deteriorated by high standard deviation and vice versa, thus resulting in low 
efficiencies of estimates compared to MLE estimates. 

The standard deviation of quantile estimates, while decreasing for increasing n, increased 
for higher non-exceedance probabilities, F. MLE resulted in lowest standard deviation, closely 
followed by POME. MOM had slightly higher standard deviation than PWM for nearly all n and 
F. LEAS estimates showed higher standard deviation than MOM, although the difference reduced 
as n increased. MLE estimates were most efficient, closely followed by POME estimates. The 
PWM estimates proved to be more efficient than MOM estimates, though less coefficient than 
POME estimates. 

8.5.2.3 Case 2: Parameter Estimates in a Serially Correlated Process: When the samples were 
generated from a serially correlated process but assumed to be random for the purpose of 
estimation, all the estimation methods produced significantly higher bias and standard deviation 
than the corresponding random process estimators of case 1. However, LEAS consistently 
produced least bias of a followed by PWM. 

From sample size 10 onwards, MLE, followed closely by POME, gave least standard 
deviation of a. However, up to sample size n = 20, LEAS resulting in comparable standard 
deviation produced estimates of a with a higher efficiency than MLE. Hence, LEAS can be 
preferred for such sample sizes. 

For b, PWM was without doubt the superior method resulting in less bias, least standard 
deviation and higher efficiency estimates. Although LEAS resulted in lower bias than PWM for 
n > 15, it showed less efficiency than PWM owing to its higher standard deviation. But it is 
significant to note that the effect of serial correlation was to markedly lower the performance 
deviation among the first five methods. In fact the first five methods performed to within 98 
percent of the efficiency of MLE method for estimating b. 

8.5.2.2.4 Quantile Estimates: The bias in quantile estimates also increased for serially correlated 
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samples as compared to purely random samples. LEAS provided least biased estimates of the first 
five methods for sample sizes 5 to 100. PWM provided the next lowest bias. MLE and POME 
continued to provide very close bias estimates, although POME produced slightly lower bias. 
MOM provided lower bias than MLE for up to about n == 30, beyond which MOM produced 
slightly higher bias than MLE. Quite in contrast with other methods, the absolute bias resulting 
from MIX increased with n for any given F. 

MLE resulted in least standard deviation of quantile estimates among the first five 
methods, even for n == 5, closely followed by POME. MOM gave lower standard deviation than 
PWM for n == 5 and 10 only, after which mostly PWM produced lower standard deviation 
estimates. LEAS provided estimates with rather high standard deviation. 

Except for n == 5, and some quantiles less than 0.5 for other n, MLE turned out to be the 
most efficient method for serially correlated samples, followed closely again by POME. PWM 
provided the next higher efficiency estimates mostly at all quantile values for all n except at n == 
5. MOM came next and MOLS provided the least efficient estimates. 

8.5.3 BIAS CORRECTION IN QUANTILE ESTIMATES OF MOM 

Owing to its simplicity and ease of calculation, MOM has been widely used as an estimator of 
EV1 distribution parameters. However, MOM results in biased estimates as shown previously. 
The bias resulting from MOM-quantile estimator can be corrected using simulation results as 
follows: From equation (8.73) with sample estimates of parameters a and b, we have 

x - x = b - b - 1n ( -In F) . [~ ~ 1 
a & 

E (x - x) = E ( b - b) - 1n ( -In F) . E [ ~ ~ 1 
a a 

But from equations (8.55a) and (8.55b), 

E(b-b) = -0.57721' E[~ - ~l 
a a 

Substituting equation (8.84) in (8.83) we obtain 

E(x-j() = -~·E[1-~l·{(0.57721+1n(-lnF))} 
a a 

(8.82) 

(8.83) 

(8.84) 

(8.85) 

E [ 1 - ( a / a) 1 is the bias of the scaled random variable a / a. It is a dimensionless quantity. 
To investigate the bias of a / a as a function of the sample size and the distribution 

parameters, three sets of sampling experiments were carried out using N == 25,000 Monte Carlo 
samples of sizes n (== 5, 7, 10, 15,20,30,40,50,75, 100, 150, and 200). The samples were 
generated respectively from the following popUlations: 

(1) a == 1.00, b == 0.0 
(2) a == 0.05, b == 100.0 
(3) a == 0.01, b == 200.0 

The bias E [ 1 - ( a / a) 1 was computed for various of n in each parameter set. The results 
were plotted on a log-log plot and are shown in Figure 8.4. It is apparent from this figure that the 
bias of a / a is independent of the population parameters from which it was computed and 
depends on the sample size n. The regression line is closely fitted by the equation: 
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E(l-~) = a 
0.35 

n 0.8589 
'" f(n) 

where f (n) denoting the "true correction" is used in subsequent discussion. 
Using equation (8.86) in equation (8.85), we obtain 

E ( x - x) = - 1 . [0. 57721 + In ( - In F) 1 
a 

From equation (8.86) we can write 

E[ 1 
a(l-f(n) ) 

1 

a 
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(8.86) 

(8.87) 

(8.88) 

which implies that 1 I [a ( 1 - f ( n) ) 1 is an unbiased estimator of 1 / a. Substituting 
equations (8.88) in equation (8.87) and simplifying, we get 

E[x-(x-f(n) . [0.57221 + In(-lnF) 1 ) 1 
a(l-f(n)) 

Hence, by definition 

x = x - f (n) • [0. 57221 + In ( - In F) 1 . -:-__ 1 __ -­
a(l-f(n)) 

o (8.89) 

(8.90) 

is an unbiased estimator ofx. It is denoted as CMOM estimator of quantile. Simplifying equation 
(8.90) further, we get 

~ 1 { } f (n) x = b - - . [In ( - In F) + O. 57221 + In ( - In F . 1 a 1-f(n) 
(8.91) 

and understandably enough the bias corrected quantile estimator is a function of not only 'F' but 
'n' also. 

The bias and standard deviation of equation (8.91), with f (n) substituted by the expression 
in equation (8.88), against the method CMOM showed that the variance of x was larger than the 
variance of x. Figure 8.5 shows the bias of original and corrected quantile estimators for 99.9 
percent non-exceedance probability. The results were typical of other probabilities too. 

8.5.4 CONCLUDING REMARKS 

Based on a statistical comparison of seven estimators of EVI distribution parameters and 
quantiles, using Monte Carlo sampling experiments, performed on two cases: a purely random 
process and a serially correlated process, some of the important conclusions were as follows: (1) 
The methods of mixed moments and incomplete means resulted in poor estimation of the 
parameters and quantiles. (2) The method ofleast squares provided minimum bias and maximum 
efficiency estimate of parameter 'a' for very small samples and also provided competitive 
estimates of parameter 'b'. (3) The maximum likelihood method generally provided most 
efficient quantile estimates followed closely by the entropy method. In fact, POME performed 
practically in the same manner as MLE, and was relatively easier to solve. (4) For small samples, 
the method of probability weighted moments and the method of moments performed comparably 
in efficiency of estimating the quantiles. However, the efficiency of PWM improved relative to 
MLE with increasing sample size. PWM also resulted in nearly unbiased quantile estimates. (5) 
The incorporation of serial correlation in samples resulted in deterioration of the performance of 
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all estimators. However, all the methods performed much more similarly in this case. (6) A bias 
corrected MOM estimator of quantile, developed for purely random process, resulted in 
practically unbiased quantiles even for very small sample sizes without causing any appreciable 
deterioration in the mean square error (MSE). It is clear that no method was uniformly superior 
across all sample sizes and quantiles. 
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CHAPTER 9 

LOG-EXTREME VALUE TYPE 1 DISTRIBUTION 

The logarithmically transformed extreme value type 1 (LEVI) distribution is the log-Gumbel 
distribution. The logarithmic version of EVI distribution is not as popular as the original EVI 
distribution. Reich (1970) employed log-Gumbel distribution to analyze annual series of 
maximum instantaneous flood peaks from 26 Pennsylvanian watersheds smaller than 200 square 
miles in area. He found consistently overestimation of long-period extremes from use of the log­
Gumbel distribution. Using the principle of maximum entropy Singh (1985) derived the log­
Gumbel distribution and its parameters. Heo and Salas (1996) estimated quantiles and confidence 
intervals for the log-Gumbel distribution. They used the methods of moments, maximum 
likelihood and probability weighted moments for parameter estimation. 

Let Y = In X, where X is a positive random variable. IfY has a Gumbel distribution, then 
X will have a log-Gumbel distribution with probability density function (pdf) given by 

f(x) ~ exp [-a(lnx-b) - e -(1m-b)] 

X 
(9.1) 

where a and b are parameters, respectively, interpreted as scale and location parameters. 
Parameter b also specifies the lower bound for In x. Thus, the log-Gumbel distribution is a two­
parameter distribution. Its cumulative distribution function (cdf) can be expressed as 
To verify if f(x), given by equation (9.1) is a pdf, we write 

F = fooo f(x)dx 

f oo 1 
= a - exp [-a(lnx-b) 

o x 
- e -a(lnx-b)] dx 

Let z = In x and dz = dx. Then equation (9.3) becomes 
x 

(9.3) 

V. P. Singh, Entropy-Based Parameter Estimation in Hydrology
© Springer Science+Business Media Dordrecht 1998



138 

F = a f~ 1. exp [-a(z-b) - e-(,-b)]xdz 
-x 

= r: a exp [-a(z-b) - e-(l-b)]dz = 1 
(9.4) 

This confirms that f (x ) is a pdf. 

9.1 Ordinary Entropy Method 

9.1.1 SPECIFICATION OF CONSTRAINTS 

Taking logarithm of equation (9.1) to the base 'e', we get 

log f(x) = In a -In x - a(ln x-b) - exp [-a(ln x-b)] (9.5) 

Multiplying equation (9.5) by [-f(x)] and integrating between 0 and 00 yield the entropy function: 

I (x) = - J o~ f(x) In f(x)dx = -In a J 000 f(x)dx + J 000 In x f(x)dx 

+ a Jooo In x f(x)dx - ab Jooo f(x)dx + Jooo exp [-a(ln x-b)] f(x)dx 

= -[In a + ab] J 000 f(x)dx + (1+a) Jooo In x f(x)dx 

+ Jooo exp [-a(ln x-b)] f(x)dx (9.6) 

From equation (9.6), the constraints appropriate for equation (9.1) can be written (Singh et aI., 
1985, 1986) as 

JoOO f(x)dx = 1 

Jooo In x f(x)dx = E[ln x] = E[y] = y 

Jooo exp [-a(ln x-b)] f(x)dx = E[exp (-a(ln x-b»] = 1 

(9.7) 

(9.8) 

(9.9) 

The least-biased density function based on POME consistent with equations (9.7) - (9.9) takes 
the form: 

(9.10) 

where A.a, AI' and A2 are Lagrange multipliers. 

9.1.2 CONSTRUCTION OF ZEROTH LAGRANGE MULTIPLIER 

Substitution of equation (9.10) in equation (9.7) gives 

J 000 f(x)dx = J 000 exp [- Ao - AI In x - A2e'a(ln x-b)]dx = 1 (9.11) 
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Equation (9.11) yields the partition function as 

(9.12) 

Equation (9.12) can be written as 

(9.13) 

Equation (9.13) can be simplified as follows: 

Let A2e -a(/nx-b) = y; e -a(lnx-b) = f ; -a(/nx-b) = In( f ) 
2 2 

_ 1 y _ 1 A2 • _ A2 lIa 
Inx-b - - - In(-) - - In (-),Inx - b + In (-) 

a A2 a y y 
, , bA~ 

b 1\02 U b 1\02 U 11 e 2 
x = e exp [In ( _) a] = e (_) a or y a = --

y y X 

_ b, lIa -(lIa). dx _ b, lIa( 1) (-(lla)-1) _ _ e b , (-(lla)-I) 
X - e 1\02 y , dy - e 1\02 - -;; y - --;;1\02 

Substitution of these quantities in equation (9.13) yields 

_ foo 1 -A,b, -A,/a A,la b, I/a (-(lIa)-I) -Yd 
- -e 1\02 y e 1\02 y e y 

o a 

f OO exp [ - Alb + b] (-(A,/a)+(lla)) «A -1)la)-1 
= A2 y' dy 

o a 
(9.14) 

exp[b(1-AI )] 

a 

The zeroth Lagrange multiplier Ao is given as 

I-A A-I 
- Ina + b - bAI + ( __ I )lnA2+ In f(-I-) 

a a 
(9.15) 

The zeroth Lagrange multiplier is also obtained from equation (9.12) as 
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A = In {~exp [-A Inx-A e-a(lnx-b)]dx 
o Jo ,2 (9.16) 

9.1.3 RELATION BETWEEN LAGRANGE MULTIPLIERS AND CONSTRAINTS 

Differentiation of equation (9.15) with respect to A, and A2 ,respectively, yields 

OAO InA2 0 A -1 
- b - + 

OA1 

[in [' (_1_)] 
OA1 a a 

(9.17) 

OAo I-A, 
---

OAz Aza 
(9.18) 

Differentiation of equation (9.18) with respect to A, gives 

(o~ In x exp [ - A,lnx - Az e -a(lnx-b)] dx 
OAo J( 

OA, foro exp[ -A,lnx-Aze -a(lnx-b)]dx 

- fo~ Inxexp[-Ao -A,lnx-A2 e-a(lnx-b)]dx 
(9.19) 

- fo~ Inxj(x)dx = - E [lnx] = - y 

Differentiation of equation (9.18) with respect to A2 gives 

fro e -a(lnx-b) exp [-A lnx -A e -a(lnx-b)]dx 
Jo '2 

{roexp[-A lnx-A e-a(lnx-b)]dx 
Jo ' 2 (9.20) 

=- (~e-a(lnx-b)exp[-A -A lnx-A e-a(lnx-b)]dx 
Jo 0' 2 

= - fo~ e -a(lnx-b)j(x)dx = - E[e -a(lnx-b)] =-1 

Equating equations (9.17) and (9.19), as well as equations (9.18) and (9.20), produces 

InA, 0 A,-1 
b + -- - - [in r (--)] = y 

a OA, a 
(9.21) 



A, -1 
--=1 
lza 
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(9.22) 

9.1.4 RELA nON BETWEEN PARAMETERS AND LAGRANGE MULTIPLIERS 

Equation (9.22) can be cast as 

A -1 
_1- = A2 

a 

Inserting equation (9.23) in equation (9.21) gives 

or 

lnAI 1 
b + - - 'P (A ) - = y 

a 2 a 

Equation (9.15) can be written as 

I-A A-I 
AO = - lna + b - bAI + ( __ I) lnA2 + lnr (_1_) 

a a 

Therefore, equation (9.10) can be expressed as 

I-A 
f(x) = exp[lna - b + bAI - ( __ I) lnA2 

a 
A -1 

- lnr(-I-) - A lnx - A e -a(lna-b) 
a I 2 

(9.23) 

(9.24) 

(9.25) 

(9.26) 

= exp[lna] exp [hAl - b ]exp [In(A2)(O.,-I)la) x 
A -1 (9.27) 

xexp[In(r(_1 -rl] xexp [In x -A,] - exp [-A2e-a(lDx-b)] 
a 

A X -A, 
= a exp[b(AI -1)] (A2)( ,-I)la) __ _ 

A -1 
r(-I-) 

a 
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A comparison of equation (9.27) with equation (9.1) shows 

(9.28) 

(9.29) 

9.1.5 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

The log-Gumbel distribution has two parameters a and b which are related to the Lagrange 
multipliers by equations (9.28) and (9.29), which, in turn, are related to the known constraints 
by equations (9.23) and (9.25). These two sets of equations are used to eliminate the Lagrange 
multipliers between them and directly relate the parameters to the constraints. Therefore, 

E[e-a(lnx-b)] = 1 (9.30) 

b + ..!. In (1 +a) - W(1)..!. = Y (9.31) 
a a 

9.1.6 DISTRffiUTION ENTROPY 

From the definition of entropy, we get 

lex) -f f(x) lnf(x)dx 

o 
00 

= -[In a+ab]f f(x)dx +(1 +a) f In xj(x)dx + f e -a(lnx-b) f(x)dx (9.32) 
000 

=-(lna+ab) + (l+a)Y+I =a(Y-b) + In(!:'.) + y =l(y)+y 
a 

- e 
where I(y) = a (y - b) + In (-). Alternatively, 

a 

l(x)=l(y) - E[InlJ(-l)l] 
x 

J(1..) =~(lnx)=..!. 
x ax x 

(9.33) 

lex) =l(y) - E[Inl..!.l] = I(y) +E[lnx] = ley) + y 
x 

which is the same as equation (9.32). 
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9.2 Parameter - Space Expansion Method 

9.2.1 SPECIFICA nON OF CONSTRAINTS 

For this method the constraints, following Singh and Rajagopal (1986), are specified by equation 
(9.4) and 

J [lnx+a(lnx-b)lf(x)dx = E[lnx+a(lnx-b)] 
o 

J exp [-a(lnx-b)]f(x)dx = E[exp( -a(lnx-b))] 
o 

9.2.2 DERIVATION OF ENTROPY FUNCTION 

(9.34) 

(9.35) 

The pdf corresponding to the principle of maximum entropy (POME) and consistent with 
equations (9.7), (9.34) and (9.35) takes the form 

(9.36) 

where Ao, AI' and A2 are Lagrange multipliers. Insertion of equation (9.36) into equation (9.7) 
yields 

exp(AO) = J exp [ -A[lnx-A1 a (Inx-b)-A2 e -a (lnx-b)]dx 
o 

_ eb(l-A,) ( 1) A, (I+~) -~ 1 1 
- -- - rp"l(l+-)--] 

a A2 a a 

The zeroth Langrange multiplier is given by 

(9.37) 
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The zeroth Lagrange multiplier is also obtained from equation (9.37) as 

AO = Infexp[-Allnx-A\a(lnx-b)-A2e-a(lnx-b)]dx 
o 

Introduction of equation (9.37) in equation (9.36) yields 

fix) 

A1(l+.!.)-.!. 
b(A1-1) 1 a a 

ae 11.2 
-------exp[ -A lnx-A a(lnx-b)-A e -aUx-b)] 

1 1 I \ 2 
r[AI (1 +-)--] 

a a 

(9.39) 

(9.40) 

A comparison of equation (9.40) with equation (9.1) shows that AI = A2 = 1. Taking -logarithm 
of equation (9.40) yields 

1 1 
-Inf(x) = -Ina -b(AI -I) - [AI (1 +-) --]lnA2 

a a 

+ Inr [AI (1 + J..) -J..] + Allnx + AI a(lnx -b) + A2e -aUnx-b) 
a a 

(9.40) 

Multiplying equation (9.40) by f(x) and integrating from - 00 to + 00, we get the entropy function: 

1 1 
+lnr[AI(l+-)--] + AIE[lnx] + A\E[a(lnx-b)] 

a a 
(9.41 ) 

+A2E [e -aUnx-b)] 

9.2.3 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

Taking partial derivatives of equation (9.41) with respect to AI' A2, a and b separately, and 
equating each derivative to zero, one obtains 

1 I 
-b-(1+-)lnA2 + (1+-)t\T(K) +E[lnx] 

a a 
(9.42) 

1 1 
+E[a(lnx-b)], K=AI(l +-)--

a a 
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where ljI(.) Is the digamma function. Simplification of equations (9.42) to (9.45) leads to 

a E [lnx] = ab -ljI (1) (9.46) 

E [e -a(lnx- b)] = 1 (9.47) 

E [Inx-b] - E [e -.(Inx-b) Inx] = l/a (9.48) 

(9.43) 

aJ 1 -AI I 1 A, 
- = 0 = -- -(- + -)lnA2 +(- --) ljI(k) 
aa a a 2 a 2 a 2 a 2 (9.44) 

+ Al E[lnx - b] - A2E[e -a(lnx-b)lnx] 

(9.45) 

E [e -.(Inx-b) ] = 1 (9.49) 

Equations (9.47) and (9.49) are the same. The parameter estimation equations are equations 
(9.46) and (9.47). 

9.3 Other Methods of Parameter Estimation 

In the Y domain, all methods of parameter estimation described in Chapter 8 will apply and will 
thus not be repeated. Only the methods of moments (MOM) and maximum likelihood estimation 
(MLE) are briefly summarized. 

9.3.1 METHOD OF MOMENTS 

In the Y domain, Y = In X, follows the EVI distribution. Therefore, parameters a and b can be 
estimated from the first two moments of Y. The estimation equation for the method of moments 
(MOM) are summarized below: 

a = 1.28251 0y (9.50) 

b = Ily - 0.45 0y (9.51) 

where Ily and 0y are respectively mean and standard deviation of y and are defined as 
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1 n 

Ily = - L In x; 
n ;=1 

n 

CJ = [ E (lnx. - Il )2/(n -1)]0.5 
y ;=1 I y 

9.3.2 METHOD OF MAXIMUM LIKELllIOOD ESTIMATION 

The method of maximum likelihood estimation (MLE) gives 

E [ exp {- a (In x - b ) } ] = 1 

n n I n 
E Inx;x;-a = (E Inx;--) E x;-a 
;=1 ;=1 a ;=1 

(9.52) 

(9.53) 

(9.54) 

(9.55) 

Note that equations (9.54) and (9.55) are equivalent to equations (9.46) and (9.47). This implies 
that POME and MLE methods should yield comparable parameter estimates. 

9.4 Comparative Evaluation of Parameter Estimation Methods 

9.4.1 ANNUAL FLOOD DATA 

Singh (1986) made a comparative evaluation of MOM, MLE and POME using instantaneous 
annual flood values for five rivers with drainage basins ranging in areas from 135 to 1,653 km 2. 

Some pertinent characteristics of the data are given in Table 9.1. These data were selected on the 
basis of length, completeness, homogeneity and independence of record. These stations had more 
than 30 years of record. Each of the five data sets was tested for homogeneity by using the 
Kruskal-Wallis test (Siegel, 1956) and the Mann-Whitney test (Mann and Whitney, 1947), as well 
as for independence by the W ald-Wolfowitz test (Wald and Wolfowitz, 1943) and the Anderson 
test (Anderson, 1941). In each case the sample was found homogeneous and independent. 

9.4.2 PERFORMANCE CRITERIA 

Two criteria were used for comparing the three methods of parameter estimation. These have 
been used by Benson (1698) and also by Bobee and Robitaille (1977). The first criterion is 
defined as the average of relative deviations between observed and computed flood discharge for 
the entire sample, with algebraic sign ignored, 

Da = E I G (T) II n (9.56) 

in which 

(9.57) 

where Xo and Xc are the observed and computed flood values, respectively, for a given value 
of return period T, and n is the sample size. 

The other criterion is the average of squares of relative deviations 
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(9.58) 

The statistics D a and Dr are objective indexes of the goodness of fit of each method to sample 
data. The observed flood discharge corresponded to aretum period which was computed by using 
the Gringorton plotting position formula, 

T = (n + 0.12) / (m - 0.44 ) (9.59) 

in which m is the rank assigned to each data point in the sample with one for the highest flow, two 
for the second highest and so on, with n for the lowest period. 

Table 9.1 Pertinent characteristics of annual flood data of five USGS gaging stations. 
x = discharge (m 3 / s) ; S x = standard deviation; C s = coefficient of skewness; 
C k = coefficient of kurtosis. 

River Gaging Station DrainageAr Period of - S, C, Ck 

Location ea (sq. Ian) Record X 

St.Mary Still Water, Nova 1,653 1915-1974 409.5 147.9 1.42 6.25 
Scotia 

Royal Yarmouth 642 1950-82 110.7 54.0 2.24 10.67 

Nezinscot Turner Center, New 733 1942-82 105.2 61.2 3.03 14.95 
Hampshire 

Pemigewass plymouth, New 1,243 1904-81 658.6 297.6 2.19 8.36 
et Hapmshire 

Smith Bristol, New 135 1919-81 57.5 33.5 3.04 14.94 
Hampshire 

9.4.3 EVALUATION OF METHODS 

Parameters a and b were estimated using each method for each sample and are given in Table 9.2. 
Clearly, the three methods yielded comparable values ofb for the five rivers, but produced values 
of a which differed at the first decimal place. Tables 9.3 and 9.4 give values of Da and Dr' 

According to the values of Da , MOM was the best of the three, followed by MIE and then 
POME. However, the results were mixed according to the values of Dr' For three rivers (Royal, 
Nezinscat and Pemigewasset ) POME was the best of the three methods, followed by MOM and 
then MLE. For the remaining two rivers (St. Mary and Smith), however, MOM was the best, 
followed by MLE and POME. Since values of Dr and D a are relatively small, three methods can 
be considered comparable. 
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Table 9.2 Parameter estimates obtained by MOM, MLE and POME 

River MOM IMLE POME 

Gaging Station a b a b a b 

St. Mary 3.8 5.8 3.7 5.8 3.4 5.8 

Royal 2.9 4.4 2.9 4.4 2.4 4.4 

Nezinscot 2.9 4.4 2.9 4.3 2.8 4.3 

Pemigewasset 3.5 6.2 3.5 6.3 3.3 6.2 
, 

Smith 2.9 3.7 2.9 3.7 2.8 3.7 

Table 9.3 Values of the mean absolute relative derivations, D a' 

River Gaging Station MOM MLE POME 

St. Mary 5.41 6.12 8.21 

Royal 9.92 l3.53 11.30 

Nezinscot 3.82 4.11 9.87 

Pemigewasset 3.72 4.66 4.29 

Smith 4.32 4.69 7.21 

Table 9.4 Values of the mean square deviations, Dr' 

River Gaging Station MOM MLE POME 

St. Mary 0.439 0.632 1.196 

Royal 2.21 3.23 2.45 

Nezinscot 0.29 0.29 0.22 

Pemigewasset 0.38 0.43 0.32 

Smith 0.32 0.34 1.73 
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CHAPTER 10 

EXTREME VALUE TYPE III DISTRIBUTION 

The extreme value type (EV) ill distribution has been employed for frequency analysis of low 
river flows (Gumbel, 1963; Matalas, 1963; Condie and Nix, 1975; Kite, 1978; Loganathanetal., 
1985). Otten and Van Montefort (1978) discussed tests for the EV distributions. Gumbel (1963) 
estimated the EV ill parameters using the method of moments (MOM). Matalas (1963) estimated 
them using MOM and the method of maximum likelihood estimation (MLE). Condie and Nix 
(1975) also used MOM and MLE. Kite (1978) described both MLE and MOM for the EV ill 
distribution. Singh (1987) employed the principle of maximum entropy (POME) to estimate the 
EV ill parameters and compared it with MOM and MLE. 

A random variable X is said to have an extreme value type (EV) ill distribution if its 
probability density function (pdf) is given by 

a x-c a-I x-c a 
fix) = - (-) exp[-(-)], a > 0, b > 0 

b-c b -c b-c 
(10.1) 

in which 'a' is the scale parameter equal to the order of the lowest derivative of the cumulative 
distribution function (cdf) that is not zero at x = c, b is the location parameter, and c is the lower 
limit to x. The EV ill distribution is a three-parameter distribution. Its cdf can be expressed as 

x-c 
F(x) = exp [ - (-)] 

b-c 

10.1 Ordinary Entropy Method 

1 0.1.1 SPECIFICATION OF CONSTRAINTS 

Taking logarithm of equation (10.1) to the base 'e' results in 

In f(x) = In a - In(b-c) + (a-I) In(x-c) - (a-I) In(b-c) _ (x-c)a 
(b-c)Q 

(10.2) 

(10.3) 

Multiplying equation (10.3) by [-f(x)] and integrating between c and 00 yield the entropy function: 

V. P. Singh, Entropy-Based Parameter Estimation in Hydrology
© Springer Science+Business Media Dordrecht 1998



- f fix) 1nf(x)dx = - f [In a + 1n(b-c) - (a-I) 1n(b-c)]f(x)dx 

00 1 00 

+ (a-I) f 1n(x-c) f(x)dx + -- f (x-ct f(x)dx 
(b-c)a c 
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(lOA) 

From equation (1004) the constraints appropriate for equation (10.1) can be written (Singh et al., 
1985,1986) as 

f f(x)dx = (10.5) 

f 1n(x-c) f(x)dx = E[ln(x-c)] (10.6) 

f (x-c)a f(x)dx = E[(x-c)a] = (b-c)a (10.7) 
c 

Equations (10.5) and (10.7) can be verified as follows: Integrating equation (10.l) between c and 
"", one gets 

(10.8) 

Let y = (x-c) f(b-c). Then dx = (b-c)dy. Therefore, equation (10.8) becomes 

j f(x)dx = ~ j ya-l exp[ -y a] (b-c)dy = a j ya-l exp[ -y a]dy (10.9) 
c b-c c 0 

Let z = 'I. Then dz = a y.-ldy. Therefore, equation (10.9) becomes 

j f(x)dx = a j ya-l e -z ~ = f e -zdz = 
c 0 aya-l 0 

(10.10) 

Likewise, equation (10.7) can be written as 
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~ ~ 

a x-c x-c f (x-c)a f(x)d:x = f (x-c)a (-)(-rl exp[ _(_)a]d:x 
c c b-c b-c b-c 

x-c Let (_)a = y . Then 
b-c 

dy = a(x-c)a-l =~ (x-c)a 
d:x (b-c)a x-c b-c 

x-c 1 
d:x = dy (-) --

a (x-c)a 
b-c 

Substituting equation (10.13) in equation (10.11), one obtains the following: 

f (x-c)af(x)d:x = f(x-c)a(~) (X-C)a-le-Y dy(x-c) (b-c)a 
o b-c b-c a x-c 

= f (x-ct (~) y(x-cr1e -Y( x-c )ydy 
o b-c b-c a 

f(x-c)a e -Y dy 
o 

= f y (b-c)a e -Y dy = (b-c)a f ye -Y dy = (b-c)a r(2) 
o 0 

= (b-ct 

10.1.2 CONSTRUCTION OF ZEROTH LAGRANGE MULTIPLIER 

(10.11) 

(10.12) 

(10.13) 

(10.14) 

(10.15) 

The least-biased density function f(x) based on the principle of maximum entropy (POME) and 
consistent with equations (10.5) - (10.7) takes the form: 

(10.16) 

where AD, AI' and A2 are Lagrange multipliers. Substitution of equation (10.16) in equation (10.5) 
yields 
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f f(x)dx = f exp[ - Ao - Al 1n(x-c) - A2 (x-c)a]dx = 1 (10.17) 
c 

Equation (10.17) gives the partition function: 

exp (Ao) = f exp[ln(x-cfA, - A2 (x-c)a]dx 
c 

~f -A 
= (x-c) 'exp[ - A2 (X-C)a] dx 

(10.18) 

c 

Equation (10.18) can be simplified as follows: Let X-c = y. Then dy = dx. Hence, equation 
(10.18) becomes 

Substitution of the above quantities in equation (10.19) yields 

Since 

r(cx)= fx .. -Ie-xdx 

o 

equation (10.20) can be written as 

( ' ) _ 1 fr~ (-(A,ia)-I +(l/a)) -u -[(-A"a)-I +1 +(l/a)) d 
exp 11.0 - - Z e 11.2 Z 

a 0 

(10.19) 

(10.20) 

(10.21) 
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(10.22) 

Taking logarithm of equation (10.22), we get the zeroth Lagrange multiplier: 

(10.23) 

The zeroth Lagrange multiplier is also obtained from equation (10.18) as 

AO = In J exp [- AI In(x-c) - Aix-c)Q]dx (10.24) 
c 

10.1.3 RELATION BETWEEN LAGRANGE MULTIPLIERS AND CONSTRAINTS 

Differentiating equation (10.24) with respect to AI and A2• respectively, one obtains 

J In(x-c)exp[ - AI In(x-c) - A2(X-C)Q]dx 
c 

J exp[ - AI In(x-c) - Aix-c)Q]dx 
c (10.25) 

=- J In(x-c) exp[ - Ao - AI In(x-c) - A2 (x-c)Q]dx 
cC 

= - J In(x-c)flx)dx = - E[ln(x-c)] 
C 

J (x-c)Qexp[ -Alln(x-c) - Aix-c)Q]dx 

C 

J exp[Alln(x-c) - Aix-c)Q]dx 

C (10.26) 

= -J (x-c)aexp[ Ao - Alln(x-c) - Aix-c)a]dx 
C 

= -J (x-c)aflx)dx = - E[(x -c)Q] = -(b-ct 

C 

Differentiating equation (10.23) with respect to A2, one gets 
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(10.27) 

Equating equations (10.26) and (10.27), we get 

(10.28) 

Differentiating equation (10.23) with respect to Ai' we get 

(10.29) 

Equating equations (10.29) and (10.25), one obtains 

a 1 - AI In A2 
- [In r(--)] + -- =- E[ln(x-c)] 
aAI a a 

(10.30) 

10.1.4 RELATION BETWEEN LAGRANGE MULTIPLIERS AND PARAMETERS 

Substituting equation (10.23) in equation (10.16) yields 

I-A I-A 
fix) = exp[ - In r( ___ l) + In a + ( ___ I) In A2 

a a 

- AI 1n(x-c) - Az<X-C)a] 

= exp[ln (1/(r( ~))] + In a + In A;(l-).t)la) 
a 

-). 
+ 1n(x-c) t - A2 (X-C)a 

1 (I-).,)/a -). 
--l--A- a A2 (x-c) 'exp[ - A2 (x-c)a] 

r(--I) 
a 

A comparison of equation (10.31) with equation (10.1) shows that 

1 A =--
2 (b-c)a 

(10.31) 

(10.32) 
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10.1.5 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

The EV ill distribution has 3 parameters a, b, and c which are related to the Lagrange multipliers 

AI = I-a (10.33) 

by equations (10.32) and (10.33) which, in tum, are related to the known constraints by equations 
(10.28) and (10.30). Eliminating the Lagrange multipliers between these two sets of equations 
we get equations which relate the parameters directly to the constraints as 

(b-ct = E[(x-ct] (10.34) 

w(I) - In b = E[1n(x-c)] (10.35) 

Since there are three parameters, equations (10.34) and (10.35) are not sufficient and another 
equation is needed. Recall that 

one obtains 

a2 1 - A 
- [In r(--I)] =Var[1n(x-c)] 
aA2 a I 

in which Al =I-a, and Var[.] is the variance of the quantity [.]. 

10.1.6 DISTRIBUTION ENTROPY 

The distribution entropy is given by equation (l0.4) which is rewritten as 

I(x) = - f ft..x) In ft..x)dx 

= [- In a+ In(b-c) + (a-I) In(b-c)] f ft..x)dx 
c 

ro 1 ro 

- (a-I) f In(x-c)ft..x)dx + -- f(x-ctft..x)dx 
(b-ct c 

For evaluating the last integral in equation (l0.37), we write 

(1O.36a) 

(1O.36b) 

(10.37) 



W = J (x-c)a f(x)dx 
c 

= j (x-c)a (~) (X-C)a-I exp[ _ (x-ct]dx 
c b-c b-c b-c 

x-c 
Let (-t = y. Then 

b-c 

Therefore, 

dy = a(x-c)a-I = ~ (x-c)a 

dx (b-ct x-c b-c 

W = j (x-c)a(~) (X-C)a-I e-Y (x-c) (b-c)a dx 
o b-c b-c a x-c 

~ a a x-c - x-c 1 
= J (x-c) (-) y (-) e Y (-) -dy 

o b-c b-c a y 

= J (x-c)a e -Y dy = J y(b-c)a e -Y dy 
o 0 

~ 

= (b-c)a J y2-1 e -Y dy = (b-c)a r (2) = (b-c)a 
o 

Hence, the entropy function takes the form: 

lex) = In(b-c) + In(b-c)a-I - In a - (a-I) E[ln(x-c)] 

+ _I_(b-c)a 
(b-c)a 

= In{ (b-c) (b-C)U-I} - (a-I) E[In(x-c)] + In e 
a 

(b c)a 
= In {--e} - (a-I)E[In(x-c)] 

a 
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(10.38) 

(10.39) 

(10.40) 

(10.41) 

(10.42) 
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10.2 Parameter - Space Expansion Method 

1 0.2.1 SPECIFICATION OF CONSTRAINTS 

Following Singh and Rajagopal (1986), the constraints consistent with the POME method and 
appropriate for the EV III distribution are equation (10.5) and 

(10.43) 

In (-) fix) dx = E[ln(-)] f x-c x-c 
b-c b-c 

(10.44) 

10.2.2 DERIVATION OF ENTROPY FUNCTION 

The least-biased pdf corresponding to POME and consistent with equations (10.5), (10.43) and 
(10.44) takes the form: 

x-c x-c A 
f(x) = exp(} .. o) exp[ - Al (_)a](_) , 

b-c b-c 
(10.45) 

where Ao,A I and A2 are Lagrange multipliers corresponding to the normality condition in 
equation (10.5) and the constraints in equations (10.43) and (10.44). 

Using equation (10.45) in the definition of the total probability, one obtains 

F x-c x-c A 
1 = exp(Ao) Jc exp[ -AI (_)a](_) 'dx 

b-c b-c 
(10.46) 

Equation (10.46) yields the partition function as 

x-c x-c A 
exp (-Ao) = r; exp[ -AI (_)a](_) 'dx 

b-c b-c 
(10.47) 

Let y = [ (x-c) / (b-c) 1 a. Then dx = a -I (b-c) y(l-a)la dy, and equation (10.47) becomes 

b-c Az + 1 (A, + 1)la 
eXp(-AO) = (-) r(--)1A1 

a a 
(10.48) 

Inserting equation (10.48) into equation (10.45), one obtains 

(10.49) 

Equation (10.49) can specialize into the following distributions for appropriate values of a, c, Al 
and Az: 

(1) a = 1, c = 0, Al = I,A2 = 0 
(2) a= l,c=O, Al = I,A2 = d 
(3) a=I,AI =I,A2 =d 

exponential 
Gamma 
Pearson type III 



(4) A1 = 1,A2 = a1 -1 
(S) a= apc = 0,A1 = 1,A2 = a1 -1 
(6) a = 2, c = 0, A1 = 1 ,A2 = 0 

Evrn 
Weibull 
(truncated) normal 
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To derive parameters a, band c for the general formulation in equation (10.49), the 
entropy function in equation (10.4) is expressed as 

I[f] 
b A + 1 1 +A -

= In(~) + Inrc-2-) - ( __ 2) InA1 +A1 E[(~)a] 
a a a b-c 

-A2 E[ln(x-c)] (1O.S0) 
b-c 

Taking partial derivatives of equation (1O.S0) with respect to A1 ,A2, a, band c separately and 
equating each derivative to zero, respectively, yields: 

or 

or 

or 

A2+1 x c 
= E[(_-_)U] 

aAJ b-c 

aI 1 A2+1 1 x-c 
= 0 = -l/r (--) - -a In A1 - E[ln (-)] 

aA2 a a b-c 

1 A2 + 1 1 
- l/r(--) - -InA = E[ln(x-c] 
a a a 1 b-c 

aI = 0 = _ 

aa a 

aI = 0 = _1 __ A1a E[(x-c )U] + A2 _l_ 
ab b-c b-c b-c b-c 

x-c 
A2 + 1 = A1 a E[(_)]U 

b-c 

which is the same as equation (10.S2). 

aI 
- = 0 = ac 

(10.S1) 

(1O.S2) 

(10.S3) 

(10.54) 

(10.SS) 

(1O.S6) 

(10.S7) 
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1 A2 
+ A2 E[-] -

x-c b-c 
(10.58) 

Equation (10.54) is simplified using equation (10.54) as 

1 A + 1 
___ (_2_) E[ln(x-c)] + At E[(X-C)a In(x-c)] = 0 

a a b-c b-c b-c 
(10.59) 

Using equation (10.52) in equation (10.59), we get 

(10.60) 

Rewriting equation (10.58), we get 

(10.61) 

The first two terms of equation (10.61) vanish as the result of equation (10.57); therefore, 

(10.62) 

Multiplying equations (10.52) and (10.62) and simplifying, we get 

(10.63) 

or 

E[_I_] E[(x-ct] 
x-c (10.64) 

Equations (10.52), (10.54), (10.60) and (10.64) are utilized to estimate the parameters of 
the distributions outlined earlier and discussed below. 

10.2.2.1 Case 1: Exponential Distribution: The exponential distribution can be obtained from 
equation (10.49) with a = 1, c = 0, At = 1 and A2 = 0 as 

f ( x) = b exp ( - x / b ) (10.65) 

Then, one obtains from equations (10.52), (10.54), (10.60) and (10.64) respectively: 

1 = E (x / b) or b = E [x] (10.66) 
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1jr (1) = E[ln(x/b)] (10.67) 

1 == E[(x/b)ln(x/b)] -E[(x/b) E[ln(x/b)] (10.68) 

and equation (10.64) does not exist. Equation (10.67) and (10.68) are identities for the 
exponential distribution, and equation (10.66) is the equation for estimation of parameter b. 

10.2.2.2 Case 2: Gamma Distribution: This distribution can be obtained from equation 00.49) 
with a == 1, c = 0, A\ = 1 and A2 =d as 

(10.69) 

Then, from equations (10.52), (10.53), (10.60) and (10.64), respectively, one obtains: 

d+l=E[~] 
b 

W(d + 1) = E[ln(~)] 
b 

= E[(~) In(~) - E[ ~] E[ln(~)] 
b b b b 

1 b 
- = E[ -] 
D x 

(10.70) 

(10.71) 

(10.72) 

(10.73) 

Equation (10.72) is an identity, and in equation (10.73) E [II x] does not exist for negative 
integers less than 1. Equations (10.70) and (10.71) are the equations for estimation of b and d. 

10.2.2.3 Case 3: Pearson Type (PT) III Distribution: By inserting a = 1, A\ = 1 and A2 = d into 
equation (10.52), the PT ill distribution can be written as 

1 1 x-c d x-c 
f(x) = red + 1) (b-) (b-) exp( - b-) 

From equations (10.52), (10.53), (10.60), and (10.64), respectively, one obtains 

d + 1 = E[ x-c] 
b-c 

W (d + 1) = E [ In ( x -c) ] 
b-c 

= E[(x-c) In(x-c)] _ E[x-c] E[ln x-c] 
b-c b-c b-c b-c 

~ = E[ b-c] 
x x-c 

(10.74) 

(10.75) 

(10.76) 

(10.77) 

(10.78) 

Equation (10.77) is an identity, and equations (10.75), (10.76) and (10.78) are the equations for 
estimation of parameters a, band c. 
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10.2.2.4 Case 4: Truncated Normal Distribution: IT a = 2, C = 0, A\ = 1 and A2 = 0 are inserted 
into equation (10.49), a truncated normal distribution is obtained: 

2 
f(x) = - exp (- (x/b)2) 

b{IT. 

From equations (10.52), (10.54), (10.60), and (10.64), one obtains respectively: 

1. = E[(x/b)2] 
2 

1 1 x - W (-) = E [In ( - )] 
2 2 b 

(10.79) 

(10.80) 

(10.81) 

(10.82) 

Equations (10.64) does not exist, and equations (10.81) and (10.82) are identities. Thus, equation 
(10.80) is the equation for estimation of parameter b. 

10.2.3 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

Substitution of A\ = 1 and A2 =a -1 in equation (10.47) results in the EV ill distribution: 

(10.83) 

Then, one obtains from equations (10.52), (10.53), (10.60) and (10.64) respectively: 

1 = E[(x-cn 
b-c 

w(I) = E [In (x-c)] 
a b-c 

E[_l_] E[(x-c)a] 
a x-c 

a-I E[(x-c)a-t] 

(10.84) 

(10.85) 

(10.86) 

(10.87) 

The parameters a, b and c are estimated from equations (10.84), (10.85) and (10.87). 
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10.3 Other Methods of Parameter Estimation 

The methods of moments (MOM) and maximum likelihood estimation (MLE) are briefly 
outlined below. 

10.3.1 METHOD OF MOMENTS 

The EV ill distribution has three parameters so three moments are needed. The r-th moment 
about the lower bound c of the EV ill distribution can be written as 

MrL' = (b-cyr[(a+r)/c], r=I,2, .... (10.88) 

These moments about c can be converted to the moments about the origin M~ or moments about 
the centroid ~r. To determine the parameters a, band c, the first three moments can be 
specified as 

o a + 1 
MI =c(b-c)f[--]=J.l 

a 
Mi = 0; = Cb-c) [r(a+2) - r2(1+a)] 

a a 

Mt = (b-c)3 [rc a +3) - 3r(a+2) r(a+l) + 2r3(a+1)] 
a a a a 

(10.89) 

(10.90) 

(10.91) 

where J.l is the centrod andO'; is the variance of X. Equations (10.89)-(10.91) are solved 

iteratively to estimate parameters a, b, and c. 

10.3.2 METHOD OF MAXIMUM LIKELIHOOD ESTIMATION 

For the maximum likelihood estimation (MLE) method the parameter estimation equations are: 

n I 
(a-1) L-­

i=1 (Xi-C) 

n 

n+a L In(xj-c) 
;=1 

n 
na L (Xj_C)a-1 

j=1 

n 
naL (X;-c)a-Iln(x;-c) 

;=1 

(10.92) 

(10.93) 

(10.94) 

A comparison of PO ME and MLE methods shows that equation (10.94) is equivalent to equation 
(10.84), equation (10.93) equivalent to equation (10.86) and equation (10.92) equivalent to 
equation (10.87). Thus, these two methods would yield comparable parameter estimates. 
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10.4 Comparative Evaluation of Estimation Methods 

Singh (1987) compared MOM, MLE and POME methods of parameter estimation using annual 
minimum 7-day average flows for the Shoal Creek and Buffalo River in Tennessee, U.S.A. 
These data were for the period 1926 to 1969 and are given by Riggs (1972). Parameters a, band 
c were estimated using the three methods were obtained and are given below: 

Shoal Creek Buffalo Creek 
Method a b c a b c 

MOM 1.672 111.77 60.55 2.105 149.97 75.27 
MLE 2.25 113.98 47.50 2.75 151.85 57.50 
POME 2.20 112.83 38.00 2.75 151.16 50.00 

Table 10.1 Comparison of three methods of fitting the EV ill distribution to annual 7-day low 
flow data of the Shoal Creek, Tennessee, U.S.A. Low flow values are computed 
for various return periods. 

Return Observed Computed flow (cfs) 
Period flow 

T (cfs) POME MLE MOM 

(Years) Computed I Error Computed I Error Computed I Error (%) 
(%) (%) 

1.05 62.5 64 2.4 68 8.8 70 10.7 
1.1 72 69 4.2 72 0 72 0 
1.2 82 76 7.3 80 2.4 78 4.9 
1.3 84 81 3.6 81 3.6 78 7.1 
1.4 88 85 3.4 89 6.3 86 2.3 
1.5 95 90 5.3 92 9.8 90 5.3 
2 102 102 0 105 2.9 101 1.0 
3 120 118 1.6 118 1.7 115 4.2 
5 127 131 3.1 129 1.6 128 0.8 

10 138 150 8.7 145 5.0 148 7.3 

Using the parameter values, the EV ill distribution was fitted to the 7-day flow data of 
the Shoal Creek and Buffalo River as shown in Figures 10.1 and 10.2. For various return 
periods, low flows were computed using the three methods for both rivers as shown in Tables 
10.1 and 10.2. For the Buffalo River, the MLE and POME methods were almost the same and 
represented the EV ill distribution reasonably well. MOM was also comparable. In case of the 
Shoal Creek, MLE and POME methods were closer for discharges exceeding 75 cfs; for lower 
discharges, MOM and MLE were closer. However, the differences between the three methods 
were marginal and were therefore considered comparable. It must be pointed out that these 
calculations offer no information on the sampling properties of the POME method which can be 
best accomplished using Monte Carlo simulations. The results show that the parameter estimates 
yielded by the principle of maximum entropy were comparable to those yielded by the methods 
of moments and maximum likelihood estimation. 
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Table 10.2 Comparison of three methods of fitting the EV ill distribution to annual 
7-day low flow data of the Buffalo River, Tennessee, U.S.A. Low flow 
values are computed for various return periods. 

Return Observed Computed Flow 
Period Flow 

T (cfs) POME MLE MOM 

167 

(Years) Computed I Error Computed I Error Computed I Error (%) 
(%) (%) 

1.05 96 102 6.25 102 6.25 100 4.2 
1.1 99 107.5 8.6 107.5 8.6 107 8.1 
1.2 105 113 7.6 113 7.6 112 6.6 
1.3 114 120 5.3 120 5.3 118 3.5 
1.4 118 124 5.1 124 5.1 121 2.5 
1.5 122 129 5.7 129 5.7 125 2.4 
2 138 142 2.9 142 2.9 139 0.7 
5 167 170 1.8 170 1.8 168 0.5 
10 190 185 2.6 185 2.6 186 2.1 

20 209 197 5.7 197 5.7 199 4.8 
30 213 200 6.1 200 6.1 202 5.2 
40 222 202 9.0 202 9.0 207 6.8 
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CHAPTER 11 

GENERALIZED EXTREME VALUE DISTRmUTION 

The generalized extreme-value (GEV) distribution was introduced by Jenkinson (1955, 1969) 
and recommended by Natural Environment Research Council (1975) of Great Britain. The GEV 
distribution is the most widely accepted distribution for describing flood frequency data from the 
United Kingdom (Sinclair and Ahmad, 1988) and has also become popular elsewhere (Otten and 
van Montfort, 1980; Prescott and Walden, 1980, 1983; Turkman, 1985; Hosking et al., 1985; 
Arnell et al., 1986). Sinclair and Ahmad (1988) introduced location-invariance in the context 
of using plotting positions in estimating parameters of the GEV distribution by the method of 
probability-weighted moments. They emphasized that this was an important factor in the 
selection of an appropriate plotting position, for otherwise the estimate of the shape parameter 
might not be independent of location. Tawn (1988) presented a method of filtering the original 
time series containing dependent data to obtain independent extremes. He then used the limiting 
joint generalized extreme value distribution for the r largest order statistics. 

During the last two dacdes, the significance of using nonsystematic data in flood 
frequency analysis has been reognized. Nonsystematic data are the historical flood data recorded 
before the beginning of the systematic period and the paleo data resulting from the analysis of 
certain proxy data. Both these types of data contain information beyond that of the systematic 
period. Historical flood information prior to the systematic period is collected from high water 
marks left by extreme floods, writen accounts in news papers and books, damage reports and 
repair reports prepared by insurance companies and government agencies, unpublished written 
records, and verbal communications from the general public. Paleo data are generally collected 
from the botanical evidence left by past floods through corrosion scars, adventitious sprouts, ring 
anomalies, vegetation age distribution, etc. Both types of data provide information in various 
forms such as the date and magnitude of one or more floods greater than a certain threshold 
value. Together they provide perhaps the most accurate information on the magnitude and 
frequency of extreme floods occurring prior to the systematic period. Frances et al. (1994) 
considered flood frequency analysis with systematic and historical or paleoflood data based on 
the two-parameter GEV distribution. They found the value of historical and paleoflood data to 
depend on (1) the relative magnitudes of systematic period and historical period, (2) the return 
period of the flood quantile of interest, and (3) the return period of the threshold level of 
perception. 

The GEV distribution has three parameters. The methods of moments (MOM), 
probability weighted moments (PWM), L-moments (LMOM), LH-moments (LHMOM), and 
maximum likelihood estimation (MLE) are some of the popular methods for estimation of GEV 
parameters. Hosking (1986) and Hosking et al. (1986) described the theory of PWMs and 
derived GEV parameters in terms of PWMs. The PWM method has since been a very popular 
method of parameter estimation. Haktanir ( 1996) proposed a modification to the conventional 
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PWM method wherein PWMs are computed from the probability of each element in the sample 
series using the distribution itself instead of a plotting position formula. Wang (1996) described 
a method of partial PWMs for fitting disributions to censored data. Hosking (1986, 1990) 
developed the theory of L-moments and used the L-moment ratio diagram to identify underlying 
parent distribution and L-moment ratios for testing hypotheses about forms of probability 
distributions. Hosking and Wallis (1991) extended the application ofL-moments and derived 
statistics to measure discordancy, regional homogeneity, and goodness of fit statistics needed in 
regional frequency analyses. Using L-moments Rao and Hamed (1994) recommended 3-
parameter log-normal distribution and GEV distribution for frequency analysis of data in the 
Upper Cauvery River basin in fudia. They extended the application of L-moments to regional 
frequency analysis of Wabash River flood data and recommended GEV as the regional parent 
distribution. Wang (1997) derived LH moments, a generalization ofL-moments for frequency 
analysis of large return period events. He argued that LH moments reduced undesirable 
influences of small events on estimation of large return period events. Vogel and Fennessey 
(1993) suggested L-moment diagrams to replace product moment diagrams, for the latter exhibit 
substantial bias and variance for small samples. Vogel and Wilson (1996) constructed L-moment 
diagrams for annual maximum, average, and maximum streamflows at more than 1,455 river 
basins in the United States. Goodness-of-fit comparisons revealed that GEV, 3-parameter 
lognormal and log-Pearson type 3 distributions provided good approximations to the distribution 
of annual maximum flood flows. Otten and van Montfort (1980) modified the procedure of 
Jenkinson (1955) and estimated the GEV parameters using MLE. Phien and Emma (1989) 
employed the MLE method to estimate the GEV parameters and quantiles for censored samples. 

A random variable X is said to have a generalized extreme value distribution if its 
probability density function (pdt) is given by 

(I-b) I 
I b - b -

f(x) = -[I--(x-c)] b exp[-(1--(x-c»]b (11.1) 
a a a 

where a >- 0 and c are respectively the scale and location parameters, and b is a shape parameter. 
The range of X depends on the value of b: it is bounded by c+(aIb) from above for b >- 0, i.e., _00 

-< x :s c+(aIb); and it is bounded from below for b ( 0, i.e., c+(aIb) :sx :s 00. The shape parameter 
b determines which extreme value distribution is represented. Depending on the value of b, 
equation (11.1) corresponds to the Fisher-Tippett distribution types I, n, and ill: the Gumbel 
distribution (extreme value type I) for b = 0, the extreme value type n distribution for b ( 0, and 
the extreme value type ill distribution for b >- O. For b = 2, equation (11.1) gives rise to a reverse 
Raleigh distribution and for b=1 it becomes a reverse exponential distribution. It can also be 
shown that the Weibull dstribution is a reverse GEV distribution. 

The cumulative distribution function (cdt) of the GEV distribution can be expressed as 

I 
b -

F(x) = exp[ -(l--(X-C»b] 
a 

Sometimes equation (11.1) is also expressed as 

f(x) __ 1_ exp[ -y-exp( -y)] 
a(l-z) 

(11.2) 

(11.3) 



where 

1 y = --In(l-z) 
b 

b z=-(x-c) 
a 

11.1 Ordinary Entropy Method 

11.1.1 SPECIFICATION OF CONSTRAINTS 

Taking logarithm to the base 'e' of equation (11.1), one gets 
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(l1.4) 

( 11.5) 

I 

lnf(x) = -In(a) + (l-b)ln[l-k(x-c)]-[I- k (x-c)]b (11.6) 
b a a 

Multiplying equation (11.6) by [- f (x)] and integrating, the result is the entropy function, I(x), 
of the GEV distribution: 

-ff(x)lnf(x)dx =- f[-lna+(1~b)ln(1-~(X-C»]f(x)dX 
I 

b -
- f [1-~(x-c)]b f(x)dx (11.7) 

The constraints appropriate for equation (11.1), consistent with POME, are derived from 
equation (11.7) as 

ff(x)dx=1 (11.8) 

f b b 
- In [ 1- - (x - c) ]f (x ) d x = - E [ In (1- - (x - c ) ] 

a a 
(11.9) 

f b lib b lib 
[1--(x-c)] !(x)dx=E[I--(x-c)] 

a a 
(11.10) 
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11.1.2 CONSTRUCTION OF ZEROTH LAGRANGE MULTIPLIER 

The least-biased pdf, based on POME, and consistent with equations (11.8)-(11.10), takes the 
form: 

b b lib f(x)=exp{-\-A, In[l--(x-c)l-~[I--(x-c)l } (11.11) 
a a 

Substitution of equation (11.11) in equation (11.8) yields the partition function: 

exp(\)= f [1-!:.(x-c)]A, exp{-~[I-!:.(x-c)]l/b }dx (11.12) 
a a 

Equation (11.12) can be simplified and expressed as 

exp(\ )=a~b(A,+I) f(b(A, +1) (11.13) 

Taking logarithm of equation (11.13) gives the zeroth Lagrange multiplier: 

\ =lna+b(A, +1)ln~ +lnf[b(A, +1)] (11.14) 

The zeroth Lagrange multiplier is also obtained from equation (11.12) as 

f b b lib 
\=In exp{-A,ln[l--(x-c)]-~[I--(x-c)] }dx 

a a 
(11.15) 

11.1.3 RELATION BETWEEN LAGRANGE MULTIPLIERS AND CONSTRAINTS 

Differentiating equation (11.15) with respect to A, and ~ , respectively, one gets 

b a An _ 1 In [1--;;( x - c)] f (x) dx 

a~- If(x)dx 

b 
E[ln{l--(x-c)}] 

a 

b 
a",O _I [l--(x-c)tb f(x)dx b 

a -E[{I--(x-c)}lIb] a "'2 - 1 f ( x) dx a 

(11.16) 

(11.17) 

where f(x) is given by equation (11. 11). Also, differentiating equation (11.14) we get 

d\ 
dA, =bln~+b'l'(k), k=b(A,-I) 

d\ 
-=b (A, -1)/ ~ 
dA,. 

Equating equation (11.16) to equation 01.18), we obtain 

(11.18) 

(11.19) 
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b 
E [ In { 1- - ( x - c ) } ] = b In A.z + b 'I' (k ) 

a 
(11.20) 

b 
E [ { 1 - - ( x - c ) } lib] = b (1 + A, ) I A.z 

a 
(11.21) 

Because the GEV distribution has three parameters, another equation is needed. This equation 
is obtained by recalling that 

a2 Au b lib aA.i =Var[ {1-;(x-c)} ] 

Differentiating equation (11.19) with respect to A.z ' we get 

a2 Au 2 aAi = -b(A, -1)/~ 

Equating equation (11.22) to equation (11.23), we get 

b 
Va r [ { 1- - ( x - c )} lib ] = - b ( A, -1) I A.i 

a 

(11.22) 

(11.23) 

(11.24) 

11.1.4 RELATION BETWEEN LAGRANGE MULTIPLIERS AND PARAMETERS 

Substituting equation (11.14) in equation (11.11 ), we get 

lib f (x)=-(A.z )b(A,+I) [l--(x-c)]A, 
a r(b[(A, +1)] a 

b 
xexp{ -A.z [1--(X-C)]llb} 

a 

(11.25) 

A comparison of equation (11.25) with equation (11.1) shows that A, = ( 1 - b ) I b and A.z = 1 . 

11.1.5 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

The relation between Lagrange multipliers and constraints is given by equations (11.20) , (11.21) 
and (11.22) and that between Lagrange multipliers and parameters by equation (11.25). 
Eliminating the Lagrange multipliers between these two sets of equations yields the relation 
between parameters and constriants. Therefore, we obtain 

b 
E[I--(x-C)]llb =1 

a 
b 

E [In { 1- - ( x - c) } ] = b 'I' (k) 
a 

(11.26) 

(11.27) 
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b 
Va r [1- - ( x - c )] lib = 1 

a 

11. 2 Parameter-Space Expansion Method 

11.2.1 SPECIFICATION OF CONSTRAINTS 

The constraints for this method are specified by equation (11.8) and 

f b-1 b b-l b -In[I--(x-c)]f(x)dx = E[-ln(1--(x-c))] 
b a b a 

1 1 b - b-
f [I--(x-c)]bf(x)dx = E[I--(x-c)]b 

a a 

11.2.2 CONSTRUCTION OF ZEROTH LAGRANGE MULTIPLIER 

(11.28) 

(11.29) 

(11.30) 

The least biased-pdf, f(x), consistent with equations (11.8) and (11.29)-(11.30) and based on 
POME takes the form: 

b-I 1 
b -. b -

f(x) = exp[-Ao-A l ln[I--(x-c)] b -A2 [1--(x-c)]b] 
a a 

(11.31) 

where Ao . Al . and Ao are Lagrange multipliers. Substituting equation (11.31) in equation (11.8) 
yields 

b -I 1 
b - b -

f exp[ -AD - AI In [l--(x -c)] b - A2[l --(x-c)] b] dx = 1 
a a 

(11.32) 

-A,(b-I) 1 
b -- b-

exp(Ao) = f[I--(x-c)] b exp[-A2 [1--(x-c)]b] 
a a 

(11.33) 

Let y = 1-[b (x-c)/a]. Then dx = -a dy/b. Substituting in equation (11.33) and changing the limits 
of integration, we get 

-A,(b-I) 1 

exp (Ao) = ~ f Y -b- exp ( - A2 Y b ) dy (11.34) 



Let z = A2 yllb . Then dy = (b/A2) (Z/A2 )b-l dz. Equation (11.34) becomes 

or 

( ' ) a ! [1+(b-l)(I-A1)]-1 ()d exp /I. = z exp -z z 
o A 1+(b-1)(1-A1) 

2 

The integral in equation (11.35) is equal to f (K), K = 1 +(b-l) (1-A 1 ). Therefore, 

a 
exp(Ao) = - f (K) 

A K 
2 

This yields the zeroth Lagrange multiplier: 

AO = Ina -KlnA2 +lnf(K) 

From equation (11.33), the zeroth Lagrange is obtained as 

, (b-l) 1 
b -"1-- b-

Ao=ln![l--(x-c)] b exp[-A2(1--(X-c))b] 
a a 

11.2.3 DERIVATION OF ENTROPY FUNCTION 

Introduction of equation (11.37) in equation (11.31) produces 
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(11.35) 

(11.36) 

(11.37) 

(11.38) 

b-l 1 
b - b -

f( x) = exp [ - In a + KIn A2 - In f (K) - Al In [ 1 - - (x - c)] b - A2 [ 1 - - (x - c) ] b ] 
a a 

A K -A 1(b-l) 1 

_-=-2_[ 1-! (X-C)]-b- exp [-(l-!(x-c))b] 
a f (K) a a. 

(11.39) 

A comparison of equation (11.39) with equation (1Ll) shows that A1 =1 and A2 =1. 
Taking logarithm of equation (11.39) yields 
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Inf(x) 
A(b-l) b b 1. 

-Ina + KlnA2 -In r (K) -] In [1 - - (x - c)] - A2 [1 - - (x - c» b ] 
b a a 

(1l.40) 
Making use of equation (11.40) the entropy function can be written as 

(b -1) b 
I(f) = Ina - KlnA2 + Inr (K) + AI E [--In (1-- (x-c»] 

b a 

(1l.41) 

11.2.4 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

Taking partial derivatives of equation (1l.41) with respect to a, b, c, AI and A2 and equating each 
derivative to zero yields 

(1l.42) 

] 

21 1 b -
- = 0 = --[I+(b-l)(I-AI )] +E[I--(x-c)]b 
2\ A2 a 

(1l.43) 

]-b 

~ = 0 = 1. + A E [ (b - 1 )( x - c) ] + A E [(l _.!?. (x _ c »-b- ( x - c) ] 
2 I b 2 2 

a a a 2(1 __ (x _ c» a a (11.44) 

a 
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AE[~ln(l-~(x-c))_(b-1) (x-c) ]+ 
I 2 a b b 

b a(1--(x-c)) 
a 

I 
b bib x-c 

+A2E[(1--(x-c)) [--In(1--(x-c))- ]] 
a b 2 a b ab(1--(x-c) 

(11.45) 

a 

I-b 
al 1 b-1 1 b -b- 1 ] 
-=O="I E [-- ]+"2 E [(1--(x-c))-
ac a l-~(x-c) a a 

(11.46) 

a 

Simplification of equations (11.42)-(11.46) and recalling that Al and .1..2 = 1 yields respectively: 

b dr(K) = E[ln(l-~(x-c))] 
dA, a 

I 
b -

= E[l--(x-c)]b 
a 

b 
E [ { 1- - ( X - c ) } lib ] = 1 

a 
df(k) b b 

b +b=E[{I--(x-c)}"bln {I--(x-c)}] 
d k a a 

1 b 
(1- b ) E [ ] = E [ 1- - ( x - c ) ] (I-b) I b 

b a 
l--(x-c) 

a 

(11.47a) 

(11.47b) 

(11.47c) 

(11.48a) 

(11.48b) 

Equations (11.47a) and (11.47b) are the same. Therefore, the estimation equations are equations 
(11.47a), (l1.47b) and (11. 48a). 
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11. 3 Other Methods of Parameter Estimation 

11.3.1 METHODOFMOMENTS 

The GEV distribution has three parameters, a, b, and c so three moments are needed for 
parameter estimation. For b less than zero ( EV type II for flood frequency analysis) the first three 
moments using the transformation: 

1 
b -

Y = [1--(x-c)]b 
a 

are found to be: 

o a 
Ml = c+-[I-r(1+b)] 

b 

3 
M3 = ~[-r(1+3b)+3r(1+b)r(1+2b)-2r3(1+b)] 

b 3 

(11.49) 

(11.50) 

(11.51) 

(11.52) 

where M lo ,M2 and M3 are, respectively, the first moment about origin, and the second and third 
moments about the centroid. The value of parameter b is computed numerically from its 
relationship to the skewness coefficient Cs as 

(11.53) 

11.3.2 METHOD OF PROBABILITY WEIGHTED MOMENTS 

The probability weighted moments (PWM) of the GEV distribution are given by Hosking (1986) 
and Hosking et al. (1985): 

(11.54) 

where p, is the r th PWM. The value of parameter b is given by Hosking et al. (1985) as the 
solution of: 



which is approximated as 

where C is expressed as 

b = 7.8590 C + 2.9554 C 2 

C 2bl -bo log2 

3b2 -bo log3 
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(11.55) 

(11.56) 

(11.57) 

where bi ' i=0,l,2, are sample estimates of Pi ,1=0,1,2. With the value ofb determined as above, 
parameters a and c are estimated as follows: 

( 11.58) 

a c = bo+-[r(1+b)-I] 
b 

(11.59) 

11.3.3 METHOD OF L-MOMENTS 

The GEV parameters are estimated using L-moments given by Hosking (1986, 1990) as: 

where C is given as 

b = 7.8590 C + 2.9554 C 2 

C = _2 __ log2 
3 +t3 log3 

(11.60) 

(11.61) 
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(11.62) 

(11.63) 

where ~ is the L-moment ratio of order 3, and L\ is the sample estimate of L-moment of order 1. 

11.3.4 METHOD OF MAXIMUM LIKELIHOOD ESTIMATION 

Jenkinson (1969) and NERC (1975) describe application ofMLE to GEV parameter estimation. 
Jenkinson (1969) transforms equation (1Ll) 

1 
f(x) = - exp [-exp(y)] exp [-y(1-b)] (11.64) 

a 

using the transformation 

a x = c + - [1 - exp ( - by)] 
b 

(11.65) 

The log-likelihood function can be expressed as 

N N 
10gL = - NLoga -(1-b) L Yi - L exp( -y) (11.66) 

i=1 i=1 

where 

1 x.-c 
Yi = --log(1--'-b) 

b a 
(11.67) 

is obtained from equation (11.65). Differentiating equation (11.66) with respect to a, b, and c and 
equating each derivative to zero yields respectively: 

Q = 0 
a 

(11.68) 



where 

.!.P+Q=o 
a b 

N 

P = N- L exp(y) 
;= I 

N N 
Q = L exp(y;+bY) - (l-b) L exp(by) 

;=1 ;01 

N N 
R = N- L y; + L y;exp(-y) 

i-I i = 1 
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(11.69) 

(11.70) 

(11.71) 

01.72) 

01.73) 

Equations (11.49)-( 11.54) are solve numerically to obtain estimates of parameters a, b, and c. 
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CHAPTER 12 

WEffiULL DISTRIBUTION 

The Weibull distribution is commonly used for frequency analysis as well as risk and reliability 
analysis of the life times of systems and their components. Its applications have been reported 
frequently in hydrology and meteorology. Grace and Eagleson (1966) fitted this distribution to 
the wet and dry sequences and obtained satisfactory results. Rao and Chenchayya (1974) applied 
it to short-term increment urban precipitation characteristics in various parts of the U.S.A. and 
obtained satisfactory fit to the durations of wet and dry periods as well as other characteristics. 
Singh (1987) derived the Webull distribution and estimated its parameters using the principle of 
maximum entropy (POME). For the precipitation data used, he found POME-based parameter 
estimates to be either superior or at least comparable to those obtained with the methods of 
moments and maximum likelihood. Nathan and McMahon (1990) considered some practical 
aspects concerning the application of the Weibull distribution to low-flow frequency analysis on 
134 catchments located in southeastern Australia. They examined the relative performance of the 
methods of moments, maximum likelihood, and probability weighted moments. They found that 
different estimation methods provided distinct sets of quantile estimates and the differences 
between estimation methods decreased as the sample size increased. While fitting the Weibull 
distribution to annual minimum low flows of different durations, Polarski (1989) found that 
occasionally the frequency distributions for different durations crossed, in which case the 
distribution parameters were constrained by adding to the likelihood function the conditions to 
prevent the curves from crossing. Vogel and Kroll (1989) developed probability-plot correlation 
coefficient (PPCC) tests for the Weibull distribution. He then used PPCC tests to discriminate 
among both competing distributional hypotheses for the distribution of fixed shape and 
competing parameter estimation methods for distributions with variable shape. Durrans (1996) 
applied the Weibull distribution to obtain estimates oflow-flow quantiles, such as 7 -day, lO-year 
low flow. For developing a stochastic flood model Eknayake and Cruise (1993) compared 
Weibull and exponentially-based models for flood exceedances. They found that the Weibull­
based model possessed predictive properties to those of the exponential model when samples 
exhibited coefficients of variation less than 1.5 and sample sizes were on the order of two events 
per year. Using Monte Carlo simulation, Singh et al. (1990) made a comparative evaluation of 
different estimators ofthe Weibull distribution parameters, including the methods of Moments, 
probability-weighted moments, maximum likelihood (MLE), least squares, and POME, with the 
objective of identifying the most robust estimator. Their analysis showed that MLE and POME 
demonstrated the most robustness. 

A random variable X is said to have a Weibull distribution if its probability density 
function (pdf) is given by 

(12.1) 

V. P. Singh, Entropy-Based Parameter Estimation in Hydrology
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Its cumulative distribution function (edt) can be expressed as 

x F(x) = exp[ - (_)a] 
b 

(12.2) 

The Weibull distribution is a two-parameter distribution and can be thought of as a reverse 
generalized extreme value (GEV) distribution. 

12.1 Ordinary Entropy Method 

12.1.1 SPECIFICATION OF CONSTRAINTS 

Taking logarithm of equation (12.1) to the base 'e', one gets 

x a 
Inf(x) = In a - In b + (a-I) [In x - In b] - -

b a 

XU 
In a - In b - (a-I) In b + (a-I) In x - -

(12.3) 

b a 

Multiplying equation (12.3) by [-f(x)] and integrating between 0 and 00 yield the entropy function: 

lex) = - f f(x) Inf(x)dx = - f [In a - In b - (a-I) In b]f(x)dx 
o 0 

ro 1 ro 

- (a-I) fIn xf(x)dx + - f xaf(x)dx 
o b a 0 

(12.4) 

From equation (12.4) the constraints appropriate for equation (12.1) can be written as 

f f(x)dx = 1 (12.5) 
0 

f In x f(x)dx = E[In x] (12.6) 
0 

f x" f(x)dx = E[x"] = b" (12.7) 
0 

Equations (12.5) and (12.7) can be verified as follows. Substituting equation (12.1) in equation 
(12.5), one gets 

(12.8) 
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Lety= 
x 

. Then equation (12.8) becomes 
b 

j f(x)dx = !!:. j ya-l e _yO b dy = a j ya-l e _yO dy 
o boo 

Let x = y. Then dz = a y-I dy. Therefore, 

Likewise, substituting equation (12.1) in equation (12.7) one gets 

x Let (_)a = y. Then 
b 

Therefore, 

dy a x a-1 bady 
- = -- or dx = -­
dx b a axa- 1 

fro a 11 )dx _ a rof a (X)a-l -y b a dy X J~X - - X - e --
o bob a x a- 1 

1 ro 

=--fbaye-Ybady 
b b a- 1 0 

ro 

= b a f e-Y y2-1 dy = b a r(2) = b a 

o 

12.1.2 CONSTRUCTION OF ZEROTH LAGRANGE MULTIPLIER 

(12.9) 

(12.10) 

(12.11) 

(12.12) 

(12.13) 

The least biased pdf, f(x), consistent with equations (12.5) to (12.7) and based on the principle 
of maximum entropy (FOME), takes the form: 

f(x) = exp[- Ao - Al In x - A2 x"] (12.14) 

where Ao, Al and ~ are Lagrangian mulipliers. Substitution of equation (12.14) in equation 
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(12.5) yields 

f f(x)dx = f exp[ - AO - Al In x - A2 X Q]dx (12.15) 
o 0 

Equation (12.15) yields the partition funciton as 

exp(AO) j exp[(1n xrAI - A2 X a]dx = j X -AI exp[ - A2 X a] dx (12.16) 
o 0 

Let A2 Xa = y. Then 

Substituting the above quantities in equation (12.16) one obtains 

(12.17) 

1 f~ «(I-AI)/a)-I) -y d Y e Y 
,(I-AlVa 0 

a 11.2 

Equation (12.17) yields the zeroth Lagrange multiplier: 

I-A I-A 
In f(--I) - In a - ( __ I) In A2 (12.18) 

a a 
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Equation (12.16) also gives the zeroth Lagrange multiplier as 

.1..0 = In J exp[ - A) In x - .1..2 X U]dx 
o 

(12.19) 

12.1.3 RELATION BETWEEN LAGRANGE MULTIPLIERS AND CONSTRAINTS 

Differentiating equation (12.19) with respect to Al and .1..2, respectively, yields 

J In x exp[ - A) In x - .1..2 X U]dx 
o 

f exp[ - A) In x - .1..2 X a]dx 
o 

- J In x exp[ - .1..0 - A) In x - .1..2 X a]dx 
o 

- J In x .f(x)dx = - E[ln x] 
o 

J x a exp[ - A) In x - .1..2 X a]dx 
o 

J exp[ - A) In x - .1..2 X a]dx 
o 

- J x a exp[ - .1..0 - A) In x - .1..2 X a]dx 
o 

- J x a .f(x)dx = - E[x a] - b a 
o 

Differentiating equation (12.18) with respect to .1..2, one obtains 

Equating equations (12.22) and (12.21) results in 

(12.20) 

(12.21) 

(12.22) 
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(12.23) 

Differentiating equation (12.18), with respect to A1 , one obtains 

(12.24) 

Equating equations (12.24) and (12.20) one gets 

a 1 - AI In A2 
- [In r(--)] + -- - E[1n x] 
aA[ a a 

(12.25) 

2.1.4 RELATION BETWEEN LAGRANGE MULTIPLIERS AND PARAMETERS 

Substituting equation (12.18) in equation (12.16), one obtains 

fix) 
1 1 (I-AI)la -A 

---all. x I 

I-A 2 
r(--I) 

(12.26) 

a 

Comparing equation (12.26) with equation (12.1), one gets 

(12.27) 

I-a (12.28) 

12.1.5 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

The Weibull distribution has two parameters a and b which are related to the Lagrange 
multipliers by equations (12.27) and (12.28) which themselves are related to the known 
constraints by equation (12.22) and (12.25). These two sets of equations are used to eliminate the 
Lagrange multipliers between them and relate the parameters directly to the constraints as: 

ba = E[ln xa] (12.29) 
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w(I) -In b = E[ln x] 

12.1.6 DISTRIBUTION ENTROPY 

The distribution entropy is 'given by equation (12.4) which is rewritten as 

lex) - f f(x) lnfix)dx = [-In a + In b + (a-I) In b] f f(x)dx 
o 0 

~ 1 ~ 

- (a-l fIn xfix)dx + - f x a fix)dx 
o b a 0 

Evaluating the last integral, we get 

Therefore, 

W = f x a f(x)dx = b a 
o 

lex) = -lna+lnb+lnb a - 1 -(a-l)E[lnx]+1 
eb a 

= In(-) -(a-l)E[lnx] 
a 

12.2 Parameter - Space Expansion Method 

12.2.1 SPECIFICATION OF CONSTRAINTS 

(12.30) 

(12.31) 

(12.32) 

(12.33) 

Following Singh and Rajagopal (1986) the constraints for this method are specified by equation 
(12.5) and 

(12.34) 

(12.35) 

12.2.2 DERIVATION OF ENTROPY FUNCTION 

The pdf corresponding to the principle of maximum entropy (POME) and consistent with 
equations (12.5), (12.34), and (12.35) takes the form: 
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(12.36) 

where Ao, AI' and A2 are Lagrange multipliers. Insertion of equation (12.36) into equation (12.5) 
yields 

(12.37) 

The zeroth Lagrange multiplier is given by 

AD = In b -Ina - K In Al + In r(K) (12.38) 

Also from equation (12.37), one gets the zeroth Lagrange multiplier: 

11.0 = In J exp [- Al ( 3:.) a - 11.2 In (3:.) a-I] dx 
o b b 

(12.39) 

Introduction of equation (12.39) in equation (12.36) produces 

(12.40) 

A comparison of equation (12.40) with equation (12.1) shows that Al = 1 and A2 = -1. 
Taking logarithm of equation (12.40) yields 

(12.41) 

Multiplying equation (12.41) by f(x) and then integrating from 0 to 00, we getthe entropy function 
which can be expressed as 

(12.42) 
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12.2.3 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

Taking partial derivations of equation (12.42) with respect to AI' A2, a, and b separately and 
equating each derivative to zero, respectively, yields 

aI _ _ K x a 
- - 0 - - - + E[(-)] 
aAI AI b 

Simplification of equations (12.44) to (12.46) yields 

E[(~)a] = 1 
b 

E [In (~)] = tIr(1) 
b a 

x x x 1 E[(-)ln(-)] - E[ln(-)] =-
b b b a 

(12.43) 

(12.44) 

(12.45) 

(12.46) 

(12.47) 

(12.48) 

(12.49) 

(12.50) 

Equations (12.49) and (12.50) are the same. Equation (12.40) does not exist for all parameter 
and variate values. Therefore, equations (12.47) and (12.48) are the parameters estimation 
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equations. 

12.3 Other Methods of Parameter Estimation 

12.3.1 METHOD OF MOMENTS 

For the method of moments (MOM), the first two moments suffice to estimate parameters a 
and b. These two moments about the origin, M\ (x) and M2 (x), are 

1 
M\ (x) = br(l + -) (12.51) 

a 

M 2 (x) = b 2r(l + ~) (12.52) 
a 

where r(·) is the gamma function. From these moments, the mean 11 = M\(x),and 
variance 0 2 = M2 (x) - [M\(x)]2,are 

1 
11 = br(l + -) (12.53) 

a 

02 = b 2 [r(l + ~) - r2(l + ..!..)] (12.54) 
a a 

The moment estimators of a and b, therefore, are 

A - 1 
b = x/[r(l + -)] 

r (1 + 2) 
a 

a 
(12.55) 

(12.56) 

where S 2 is the sample estimate of the variance (J 2 and ~ is the sample mean estimate of 11. 

12.3.2 METHOD OF MAXIMUM UKELIHOOD ESTIMATION 

For the method of maximum likelihood estimation (MLE), the log-likelihood function for a 
sample x = {x\ ,x2"" ,xN } drawn from a Weibull population is 

a N X. N x. 
10gL(x;a,b) = N log(-) + (a-1) Elog(....!.) - E (....!.)a 

b ;=\ b ;=\ b 
(12.57) 

where N is the sample size. The maximum likelihood estimators (MLE's) of a and b are taken 
to be the values a and E, which yield the maximum of log L. This produces 

1 A N 
= ~ L x/J logx; - logx 

a N(b) ;=\ 
(12.58) 

(12.59) 
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A comparison of PO ME and MLE methods shows that equation (12.59) is equivalent to 
equation (12. 47), and equations (12.58) and (12.48) have E [In x] in common. Thus, intuitively, 
it appears that these methods would yield comparable parameter estimates. 

12.3.3 METHOD OF PROBABILITY WEIGHTED MOMENTS 

The probability weighted moments (PWM) of a random variable X with the distrubution function 
F(x) are defined (Greenwood, et al., 1979; Landwehr, et al., 1979) as 

Mr,.,, 1 = E[xr{F(x)}, {l-F(x)}!],forrealr,s,andt (12.60) 

Again, as in the case of moment estimation, the first two PWM's ( Ml , 0 , 0 ' Ml , 0 , 1) are 
sufficient to obtain estimates of the parameters a and b. These moments are related to the 
parameters by (Greenwood, et al., 1979) : 

M = ar(1 + lib) 
1,0,1 (1 + t)1 + lib 

Thus, the PWM estimators of a and b are: 

Mo 
ii = -----"----

M 
r[ln(-o )/In(2)] 

MI 

In(2) 

M 
In(_o_) 

2MI 

12.3.4 METHOD OF LEAST SQUARES 

(12.61) 

(12.62) 

(12.63) 

The method of least squares (MOLS) is based on a linear regression of the observations Xi on 
the empirical probabilities of Xi estimated from a plotting position formula. In order to obtain 
these estimates, the data are ranked in descending order and the empirical exceedance probability 
(1 - F (x» estimated by: 

m. 
P. = --'-

, N + 1 
(12.64) 

where Pi = empirical exceedance probability of observation Xi' mi rank of observation Xi 

,and N = sample size. 
From equation (12.2) one can obtain: Pi = ii In Xi - ii In 11. The least squares estimates 

of a and b are therefore: 



N N N 

N L Pi lnxi - L lnxi L Pi 
d = __ ~i=~I ________ ~i=~I __ ~'~'=~I __ 

N N 
n L (In xy - (L In xy 

i=1 i=1 

N N 

d L In Xi - LPi 

b = exp [ i = 1 i=1 ] 
Nd 

12.4 Comparative Evaluation of Parameter Estimation Methods 

12.4.1 APPLICATION TO FREQUENCY ANALYSIS OF PRECIPITATION 
CHARACTERISTICS 
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(12.65) 

(12.66) 

Singh (1987) evaluated MOM, MLE, and POME using rainfall depth values corresponding to 
given frequencies and durations, which are frequently used in design of urban storm drainage. He 
employed two sets of excessive precipitation data recorded at Chicago, lllinois, and compiled by 
the Chicago Weather Bureau Office. The objective of this application was fourfold: (1) to 
illustrate the POME method for the Weibull distribution, and (2) to examine the adequacy of this 
distribution for frequency analysis of precipitation characteristics. These data are for the period 
1913 to 1935, and have been analyzed by Chow (1953). The first set of data was comprised of 
accumulated depths (originally given in inches but converted to centimeters) during excessive 
rates for individual rain storms. The second set of data was for durations of the rain storms 
considered in the first data set. 

Parameters a and b of the Weibull distribution were estimated using MOM, MLE and 
POME for both data sets and were obtained as: 

DataSet 
I 

Rainfall Depths 
(2.54 cm) 

IT 
Rainfall Duration 

(min.) 

Method 

MOM 

MLE 

POME 

MOM 

MLE 

POME 

a 

1.70 

1.83 

1.99 

1.56 

1.67 

1.76 

b 

0.858 

0.867 

0.888 

33.08 

33.50 

34.03 

Using these parameter values, the Weibull distribution was fitted to the two data sets as shown 
in Figures 12.1 and 12.2. Clearly the three methods yielded comparable parameter values and 
consequently comparable agreements between observed and computed distributions. Thus, the 
POME method is a useful alternative for estimating parameters of the Weibull distribution. 

The Weibull distribution did not represent well the probability density functions of rainfall 
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Figure 12.1 Fitting the Weibull distribution to rainfall depth (data set n by the MOM, MLE and 
POME methods. 
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depths and durations for the data used in this study as seen from Figures 12.1 and 12.2. This is 
at variance with the findings of Rao and Chenchayya (1974). This then suggests that other 
probability distribution should be found which can more accurately represent probability 
distributions of rainfall characteristics. This is important in view of large expenditures involved 
in the design of urban drainage structures. 

12.4.2 MONTE CARLO EXPERIMENTATION 

12.4.2.1 Monte Carlo Samples: The inverse form of equation (12.2) is given by 

x(F) = -b[l - 10gP(x)]1/a (12.67) 

where x(F) denotes the quantile of cumulative probability PorI - F(x). To assess the 
performance of the parameter estimation methods outlined above, Monte Carlo sampling 
experiments were performed by Singh et al. (1990). Their work is summarized here. Seven 
Weibull population cases, listed in Table 12.1, were considered. For each population case, 1,000, 
1,500, and 2,000 random samples of size 10,20,30,50,75,100,500, and 1000 were generated, 
and then parameters and quantiles were estimated by the aforementioned methods. The relative 
performance of the methods did not significantly depend on the number of samples generated. 

12.4.2.2 Performance 1ndices: The 2,000 estimated values of estimated parameters and quantiles 
for each sample size and population case were used to approximate the following performance 
indices for that case: standard Bias (BIAS), standard Error (SE), and root mean square Error 
(RMSE). 

Table 12.1 Weibull population case considered in sampling experiments (~ 1). 

Weibull Distribution Coefficient of Variation Parameters 

Population COY a I b 

Case 1 0.30 3.7142 1.1079 
Case 2 0.50 2.1014 1.1291 
Case 3 0.70 1.4513 1.1030 
Case 4 1.0 1.000 1.000 
Case 5 1.5 0.685 0.773 
Case 6 2.0 0.543 0.575 
Case 7 3.0 0.411 0.324 

12.4.2.2 Bias in Parameter Estimates: The seven cases considered represent a wide variation 
in variance of the population data. The results of the parameter bias analyses showed that MLE 
and POME performed very consistently for all cases and all sample sizes in estimating parameter 
a. MOM demonstrated less bias for case 1 (COV = .30) than MLE; however, MLE still performed 
well for this case. MOM showed the least consistency of all the mothods, and MOLS, although 
performing consistently for the wide range in population variation, resulted in high negative bias 
in all cases. PWM performed very poorly for the cases of small population variance resulting in 
high negative bias, but performed very well for cases of high variance in the data. fu fact, for the 
last two cases, PWM showed the smallest bias in estimation of a of any of the methods. fu 
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summary, it appears that POME performs very well across all population cases and thus appears 
to be the best estimator of a in terms of bias if the population variance is unknown, However, if 
a large degree of variance is suspected in the data, PWM may be the superior estimator, 
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Figure 12.2 Fitting the Weibull distribution to rainfall depth (data set m by the MOM, MLE and 
POME methods. 

The results of bias in estimation of b were similar to the previous case. Again, MLE and 
POME preformed well across all cases with MOM deteriorating rapidly with large variance in the 
population. In fact, there was some deterioration in the performance of all the methods in contrast 
to the previous case. MOLS performed poorly for all the cases. PWM again offered an interesting 
case. PWM resulted in negative bias for all cases except one in estimation ofb. While there was 
some deterioration in bias for this method up to case 6 (COV = 2.0), there was improvement in 
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case 7. Therefore, again as in the previous case, PWM appeared to be superior in terms of bias 
for populations which exhibited a high degree of variance. However, POME and MLE performed 
most consistently relative to other methods across all fluctuations in population variance. 

12.4.2.3 Bias in Quantile Estimates: The results of the quantile bias analyses showed that, in 
general, as sample size increased, bias for a given return period decreased. For a specified sample 
size, bias increased as the return period increased. As in the case of bias in parameter estimates, 
MLE and POME appeared to perform well for all cases and all sample sizes. They resulted in 
negative bias for all quantiles at small COY values. There was some deterioration in bias as COY 
increases for all methods. However, MLE and POME consistently performed well relative to all 
other methods. PWM did not perform as well for higher COY in this case as in the previous case. 
There did not appear to be any condition for which PWM estimators of quantiles were 
consistently superior. MOM performed well for small COY, but deteriorated for higher COY 
values and larger quantiles. MOLS performed very poorly for all cases. MLE appeared to 
perform better than POME for larger values of COY while the reverse was true of the smaller 
COY cases. Thus, MLE appeared to be the most resistant and robust estimator in terms of 
quantile bias. 

12.4.2.4 RMSE of Parameter Estimates: The RMSE values of the estimates of Weibull 
parameters showed that in the case of parameter bias, MLE and POME performed very 
consistently in terms of RMSE of parameter a. There was no deterioration in RMSE as COY 
increased for these two methods. MOLS also performed consistently; however RMSE was larger 
for this method than MLE or POME. As in the previous case, PWM performed poorly for small 
COY and very well for larger values of COY. However, with one exception (COV::;; 2.0 for small 
sample sizes), the PWM estimate always exhibited larger RMSE than MLE or POME. MOM 
deteriorated rapidly as COY increased and thus was the least robust estimator of a. MLE and 
POME were very close with a slight edge to MLE except in the case of small sample sizes. 

All methods showed some deterioration in RMSE for estimates of parameter b as COY 
increased. However, MLE and POME performed well in comparison to others in all cases. PWM 
exhibited less deterioration for increasing COY than any other method. For the cases of COY ~ 
2.0, PWM estimates ofb were superior for small to medium sample sizes, with MLE and POME 
performing slightly better for larger sample sizes (N ~ 50). Thus, MLE and POME appeared to 
be more consistent and robust estimators ofb with a very slight advantage to MLE. 

12.4.2.5 RMSE of Quantile Estimates: The results ofthe RMSE analyses for quantile estimation 
showed that as in the previous cases, MLE and POME again appeared to perform relatively well 
for most cases. MOM performed well for small sample sizes, but deteriorated somewhat for the 
larger samples. MOM appeared to perform particularly well for larger quantiles for small sample 
sizes. Since this is a case of interest to many engineers and physical scientists, MOM appeared 
attractive because ofthis characteristic. However, it was not as consistent as MLE or POME for 
other cases. As in previous cases, PWM performed poorly for small COY values and increasingly 
better relative to other methods for larger COY values. For the case (COV ::;; 3.00), PWM was 
superior for the .90 quantile for all sample sizes except 1000 and was competitive for other 
quantiles. MOLS performed most poorly for all the methods. Although there was deterioration 
in RMSE for all methods as COY increased, POME and MLE performed most consistently for 
more cases than the other methods. 

12.4.2.6 Robustness of 100 Year Quantile Estimates: The quantile with a return period of 100 
(F(x)::;; .99) is of particular interest to engineers and hydrologists since the Weibull distribution 
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has been applied to rainfall frequency studies. It is generally assumed in practice that the return 
period of the rainfall is equal to the return period of the peak of the runoff hydrograph resulting 
from that rainfall. Thus, the rainfall values with a return period of 100 (say, years) is of interest 
because it may represent a flood hydro graph of the same return period. The 100 year flood is used 
as the basis for the federal flood insurance program as well as the basis for design of many 
hydraulic structures. Thus, it is of particular interest to select the estimation method which would 
result in the most resistant (least RMSE) estimate of that quantile. 

The results of the robustness evaluation of this quantile from the seven population cases 
used in the study for four sample sizes showed that for small N (10 - 20), MOM was the robust 
estimator by both criteria with PWM and MLE performing better than POME and MOLS. For 
the case ofN = 5, MOM was still superior by the mini-max criterion; however, MLE and POME 
were better by the average criterion. For large samples (N = 100), MLE and POME were superior 
by both criteria, with MLE performing slightly better. Thus, if only small samples (10 - 20) were 
available, one would use MOM; while for large samples, MLE would be preferred by the RMSE 
criteria. 

The results of the bias analysis for the 100 year quantile estimates for all seven test 
populations showed that for the cases of small population variance, MOM, MLE, and POME all 
resulted in negative bias for all sample sizes. MLE and POME became increasingly negative in 
bias for all sample sizes. MLE and POME became increasingly negative up to case 3 (COV = .7) 
after which POME became less negative and finally became positive in case 5 for small samples 
and case 6 for all samples except the largest. MLE became less negative after case 4 (COV = 1.0) 
and finally became positive for the last two cases. Bias in MOLS was positive for all sample sizes 
and became larger as COY increased. PWM bias was also positive for all cases; however it 
moved in the opposite direction of MOLS. The largest bias was for case 1 and the bias became 
less as COY increased until PWM was one of the least biased methods for the last two cases. 
However, overall MLE and POME consistently showed the least absolute bias, whether positive 
or negative, than other methods. POME showed the smallest absolute bias in all but the last two 
cases. However, MLE showed the least deterioration in bias over all seven test populations. 
Therefore, from an overall perspective, considering both RMSE and bias, MLE would be the most 
consistent and therefore robust estimator of the 100 year quantile for the Weibull distribution. 

12.4.2.7 Concluding Remarks: The Monte Carlo experiments showed that the maximum 
likelihood estimation method and POME performed most consistently for the largest number of 
situations for both parameter and quantile estimation. Two exceptions can be noted, however. 
For very small sample sizes, MOM appeared to be superior in estimating the larger quantile ( 
F(x) ~ .99) in terms of RMSE, but not in terms of bias. Also, in cases where large variance was 
expected in the population, PWM was superior for parameter estimation and for estimation of 
some quantiles in terms of RMSE and bias. 
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CHAPTER 13 

GAMMA DISTRmUTION 

The two-parameter gamma distribution is commonly employed for synthesis of instantaneous or 
finite-period unit hydrographs (Dooge, 1973) and also for flood frequency analysis (Haan, 1977; 
Phien and Iivajirajah, 1984; Yevjevich and Obseysekera, 1984). By making two hydrologic 
postulates, Edson (1951) was perhaps the first to derive it for describing a unit hydrograph (UH). 
Using the theory of linear systems Nash (1957, 1959, 1960) showed that the mathematical 
equation of the instantaneous unit hydrograph (IDH) of a basin represented by a cascade of equal 
linear reservoirs would be a gamma distribution. This also resulted as a special case of the 
general unit hydrograph theory developed by Dooge (1959). On the other hand, using statistical 
and mathematical reasoning, Lienhard and associates (Lienhard, 1964; Lienhard and Davis, 1971; 
Lienhard and Meyer, 1967) derived this distribution as a basis for describing the IDH. Thus, 
these investigators laid the foundation of a hydrophysical basis underlying the use of this 
distribution in synthesizing the direct runoff. There has since been a plethora of studies 
employing this distribution in surface water hydrology (Gray, 1961; Wu, 1963; DeCoursey, 1966; 
Dooge, 1973; Gupta and Moin, 1974; Gupta, et al., 1974; Croley, 1980; Aron and White, 1982; 
Singh, 1982a, 1982b, 1988; Collins, 1983). 

If X has a gamma distribution then its probability density function (pdt) is given by 

fix) = _1_ ~ - e -xladx ( ) 
b 1 . 

arCh) IX 
(13.1a) 

where a > 0 and b > 0 are parameters. The gamma distribution is a two-parameter distribution. 
Its cumulative distribution function (edt) can be expressed as 

F(x) = r~ _1_ (~) b-l e -xladx 

Jo arCh) a 

Ify =xJa then equation (13.1b) can written as 

1 JY b-l 
f(Y)=r(b) 0 y exp(-y)dy 

Abramowitz and Stegun (1958) express F(y) as 

(13.1b) 

(13.2a) 

V. P. Singh, Entropy-Based Parameter Estimation in Hydrology
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(13.2b) 

where F(X2 I v ) is the chi-square distribution with degrees of freedom as v = 2b and X2 =2y. 
According to Kendall and Stuart (1963), for v greater than 30, the following variable follows a 
normal distribution with zero mean and variance equal to one: 

X2 2 9 V u =[ (_)113 +- -1 ](_ )112 
V 9v 2 

(13.2c) 

This helps compute F(x) for a given x by first computing y=x1a and X2 =2y and then inserting 
these values into equation (13.2c) to obtain u. Given a value ofu, F(x) can be obtained from use 
of the normal distribution tables. 

13.1 Ordinary Entropy Method 

13.1.1 SPECIFICATION OF CONSTRAINTS 

Taking logarithm of equation (l3.1a) to the base e, one gets 

In f(x) = -In ar(b) + (b-l) In x - (b-l) In a - !.. 
a 

= -In a r (b) + (b - 1) In a + (b-l) In x - [x/a] (13.3) 

Multiplying equation (13.3) by [-f(x)] and integrating between 0 and 00, one obtains the entropy 
function: 

Iif) = - fo~f(x)lnf(x)dx = [In a r(b) +(b-l)lna] fo~f(x)dx 

f ~ 1 f~ -(b-l) Inxf(x)dx +- xf(x)dx 
o a 0 

(13.4) 

From equation (13.4) the constraints appropriate for equation (13.1 a) can be written (Singh et al., 
1985, 1986) as 

(13.5) 

fo~ xf(x)dx =x (13.6) 
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(lnxf{x)dx =E[lnx] (13.7) 

13.1.2 CONSTRUCTION OF ZEROTH LAGRANGE MULTIPLIER 

The least-biased pdf based on the principle of maximum entropy (POME) and consitent with 
equations (13.5) to (13.7) takes the form: 

(13.8) 

where AO' A\. and A2 are Lagrange multipliers. 
Substitution of equation (13.8) in equation (13.5) yields 

(13.9) 

This leads to the partition function as 

(13.10) 

Let Al X = y. Then [dy/AI]/x. Therefore. equation (13.10) becomes 

Thus. the zeroth Lagrange multipliers Ao is given by equation (13.11) as 

(13.12) 

The zeroth Lagrange multiplier is also obtained from equation (13.10) as 
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(13.13) 

13.1.3 RELATION BETWEEN LAGRANGE MULTIPLIERS AND CONSTRAINTS 

Differentiating equation (13.13) with respect to Al and Az, respectively, produces 

aA 

aA I fooo exp [-AI x - A21nx]dx (13.14) 

= - foOOxeXP[-Ao-Alx-Azlnx]dx =- foooxJ(x)dx=-x 

aAo fooo lnxexp[ -AIX - Azlnx]dx 

aAz fo 00 exp[ - AI x - Azlnx]dx (13.15) 

= - foooinx exp[ -AO - Al x - A2lnx]dx = - fooolnxJ(x)dx = -E[lnx] 

Also, differentiating equation (13.12) with respect to AI and Az gives 

(13.16) 

aAo a 
- = InA + -r(l-A ) 
aA I aA 2 z z 

(13.17) 

Let 1 - A2 = k. Then 

(13.18a) 

aAo a ak 
- =lnA +-r(k)-=lnA -lJr(k) 
aA I ak aA I z z 

(13.18b) 
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Equating equations (13.14) and (13.16) as well as equation (13.15) and (13.18), one gets 

(13.19) 

l\J(k) - E[lnx] = InAI (13.20) 

From equation (13.19), Al = k/ x, and substituting Al in equation (13.20), one gets 

E[lnx] -Inx = l\J(k) -Ink (13.21) 

We can find the value of'k' (=1 - A ,) from equation (13.21) and substitute it in equation (13.19) 
to get AI' 

13.1.4 RELATION BETWEEN LAGRANGE MULTIPLIERS AND PARAMETERS 

Substituting equation (13.11) in equation (13.8) gives the entropy-based pdf as 

(13.22) 

If A2 = 1 -k then 
Ak 

fix) =_I_exp[ -A X]X k - 1 

r(k) I 
(13.23) 

A comparison of equation (13.23) with equation (13.1a) produces 

(13.24) 
and 



207 

(l3.25) 

13.1.5 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

The gamma distribution has two parameters a and b which are related to the Langrange 
mutlipliers by equations (13.24) and (13.25), which themselves are related to the known 
constraints by equations (13.19) and (13.21). Eliminating the Lagrange multipliers between these 
two sets of equations, we get parameters directly in terms of the constraints as 

ba =x 

web) -lnb =E[lnx] -lnx 

l3.1.6 DISTRIBUTION ENTROPY 

Equation (13.4) gives the distribution entropy. Rewriting it, one gets 

lex) = - foOOj(x)lnf(x)d.x 

(l3.26) 

(13.27) 

= [lnar(b) +(b-l)lna] foOOj(x)d.x -(b-l) fooolnxf(x)d.x 

1 foo +- xj(x)d.x 
a 0 

=[lnar(b) + Ina b-l] - (b-l)E[lnx] + ~ 
a 

= In(ar(b)ab-l) +~ -(b-l)E[lnx] 
a 

=In(f(b)a b) +~ -(b-l)E[lnx] 
a 

13.2 Parameter-Space Expansion Method 

13.2.1 SPECIFICATION OF CONSTRAINTS 

(l3.28) 

For this method the constraints, following Singh and Rajagopal (1986), are equation (13.5) and 

f OOX x 
-f(x)d.x=E[-] 

o a a 
(13.29) 

(l3.30) 
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13.2.2 DERIVATION OF ENTROPY FUNCTION 

The least-biased pdf corresponding to POME and consistent with equations (13.5), (13.29) and 
(13.30) takes the form 

(13.31) 

where .1..0' AI' and Az are Lagrange multipliers. Insertion of equation (13.31) into equation (13.5) 
yields the partition function: 

exp(Ao) = (00 exp [ - Al ( .::. ) - Azln ( .::. )b-I ] dx 
)0 a a 

= a(A/'2(b-I)-1 r(1-Az(b-l» 
(13.32) 

The zeroth Lagrange multiplier is given by equation (13.32) as 

(13.33) 

Also, from equation (13.32) one gets the zeroth Lagrange multiplier: 

(13.34) 

Introduction of equation (13.32) in equation (13.31) produces 

(13.35) 

A comparison of equation (13.35) with equation (l3.1a) shows that \ = 1 and )"Z = -1. 
Taking logarithm of equation (13.35) yields 

Infix) = -Ina + (1-Az(b-l»lnAI -lnr(1-Az(b-l» - AI'::' - .1..2 In ( .::. )b-I 
a a 

(13.36) 
Multiplying equation (13.36) by [-f(x)] and integrating from 0 to 00 yield the entropy function of 
the gamma distribution which can be written as 
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lif) ~ Ina - (I-A/b-l))lnAJ +lnr(l-A/b-l))+AJ£ [ .::. ] +A2£ [In( .::. )b-J ] 
a a 

(13.37) 

13.2.3 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

Taking partial derivatives of equation (13.37) with respect to Al ' A2 ' a, and b separately and 
equating each derivative to zero, respectively, yields 

aI 1 x - ~O ~ -(I-A/b-l))- +£ (-) 
aA j Al a 

(13.38) 

~ ~O ~ +(b-l)lnA I -(b-l)lj1(K)+£ [In (.::. )b-I] ,K~I-A2(b-l) 
aA2 a 

(13.39) 

(13.40) 

aI Xb-I-l. - ~O ~ +A InA +£[In(-) ] 2,1'(K) 
ab 2 I a 'I' 

(13.41) 

Simplification of equation (13.38) - (13.41), respectively, gives 

£( '::')~b (13.42) 
a 

£[In('::')] ~lj1(k) (13.43) 
a 

(13.44) 
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E[ln( ~)] = l/1(k) (13.45) 
a 

Equation (13.42) is the same as equation (13.44), and equation (13.43) as equation (13.45). 
Therefore, equations (13.42) and (13.43) are the parameter estimation equations. 

13.3 Other Methods of Parameter Estimation 

The parameters of gamma disribution can be estimated from known sample data D = (Xl' x2, ... , 

X,) using a number of methods which, in general, produce differing estimates and confidence 
intervals. Croley (1980) discussed some of these methods. Singh and Chowdhury (1985) 
compared 12 different methods by fitting gamma distribution to four experimentally observed 
runoff hydrographs and found that statistical methods of parameter estimation were superior to 
those based on point or planar boundary conditions. Some of these methods are discussed here: 
(1) method of moments (MOM), (2) method of cumulants (MOC), (3) method of maximum 
likelihood estimation (MLE), (4) probability weighted moments (PWM), and (5) method ofleast 
squares (MOLS). These methods are frequently employed for fitting the gamma distribution in 
hydrology. The entropy method is then compared with these methods. 

13.3.1 METHODOFMOMENTS 

The r-th moment of equation (13.1a) about origin is given as 

(13.46) 

Let (x/a) = y. Then 

a r 
co + a r 

M =-- r yr b-I exp ( -y)dy = --f(r+b) 
r feb) Jo feb) 

(13.47) 

Since there are two parameters, it will suffice to determine the first two moments for the method 
of moments (MOM): 

M2 = a2 b(b +1) 

or 
E[x] = ab 

Var [x] = a2 b 

(13.48) 

(13.49) 

(13.50) 

(13.51) 
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Hence, parameters a and b can be estimated by knowing the mean and variance of the variable 
X. 

13.3.2 METHOD OF CUMULANTS 

The method of cumulants (MOC) involves finding the first two cumulants C, and CO, and solving 
for a and b. The r-th cumulant can be expressed as 

d r 
Cr=-lnG(B)IB=o; r=1,2, ... 

dBr 
(13.52) 

in which G( B) is the moment generating function of f(x) defined as 

G(B) = (exp(Bs)j(s)ds (13.53) 

Therefore, 

(13.54) 

(13.55) 

Since cumulants and moments are uniquely related, we get 

(13.56) 

(13.57) 

Cumulants C, and C2 are obtained from M, and M2, and then a and b are determined. It is then 
clear that the methods of moments and cumulants will yield the same values of a and b. 

13.3.3 METHOD OF MAXIMUM LIKELIHOOD ESTIMATION 

For the method of maximum likelihood estimation (MLE), the likelihood function L of receiving 
the sample data D '" (x" x2, ... , x") given the values of a and b is: 

n 

L(Dla,b) = llj(x) (13.58) 
i=1 

Therefore, 
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1 XI X L(Dla,b) = [ (_ )b-I ... (--.!!. )b-I ] 

a n(r(b)t a a 
X X 

x exp [ - ( -..!. +... + --.!!. ) ] 

(13.59) 

a a 

IfL(Dla, b) is maximal, then so is In L(Dla, b). Therefore, log-likelihood function is 

n 1 n 

InL=-nblna-nlnf(b)+(b-l)L Inxj--L Xj 
j=1 a i=1 

Thus values of a and b are sought which produce 

a -[inL(Dla,b)] =0 aa 

a -[lnL(Dla,b)] =0 
ab 

Hence, the equations for estimating a and b are 

1 n _ 
-Exj=x=ab 
n j=1 

1 n 
lj1(b) + Ina = - E lnxj 

n j=1 

(13.60) 

(13.61a) 

(13.61b) 

(13.62a) 

(13.62b) 

where lj1(b) = d[in r(b)]/db. Note that X, in actual practice, will be weighted mean, not 
arithmetic mean. 

Bobee and Ashkar (1991) proposed the following method of solving equations equations 
(l3.62a) and (13.62b). Taking logarithm of equation (13.62a) yields 

(13.63a) 

where A is arithmetic mean and Z is geometric mean. An approximate value ofb was obtained 
as: 
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1 
b =W[ 0.5000876 + 0.1648852 W - 0.054427 W 2] ,0 $;W $; 0.5772 

(13.63b) 

8.898919 + 9.059950W +0.9775373 W 2 

b= W(l7.7928+11.968477W+W 2 ) ,0.5772$;W$;17.0 

(13.63c) 

The error in approximation by equation (13.63a) is less than 0.0088% and by equation (13.63b) 
is less than 0.0054%. The value ofb obtained above is substituted in equation (13.62a) to obtain 
the value of a. 

13.3.4 COMPARISON OF POME AND MLE METHODS 

On comparing (13.42) and (13.43) with (13.62) and (13.64) it is clear that MLE equations 
involve sample averages whereas POME equations involve expectations. In other words, ifE[x] 
is replaced by Lx/n and E[ln x] by LIn x/n then the two sets of equations become identical, and 
will produce identical parameter estimates. In practice, since sample values are used, the two 
methods would yield the same parameter values. 

13.3.5 METHOD OF LEAST SQUARES 

The method of least squares (MOLS) minimizes the sum of squares of deviations between 
observed values (fo) and computed values (fc) of the function f. To that end, it is more convenient 
to use In f(x) than f(x), 

n 

E = L [In!o(x) -In!c(x)]2 
j=1 

n X 
= L [In!o(x) + lnr(b) +b lna-(b-l)lnx j +....!.] 2-min 

j=1 a 

(13.64) 

where E is the error function. Differentiating E with respect to a and equating to zero, and doing 
likewise with respect to b results in two nonlinear equations which can be solved for a and b. 
However, the global minimum ofE is more easily found by computing the surface ofE, without 
logarithmically transforming f(x), in the a-b plane. This procedure has been found to be equally 
efficient and more instructive as it pictures evolution of the error surface with variations in a and 
b (Singh and Chowdhury, 1985). 

13.3.6 METHOD OF PROBABILITY WEIGHTED MOMENTS 

Hosking (1990) derived probability-weighted moments (PWM) for the gamma distribution. 
These are expressed in terms of L-moments from which parameters a and b are obtained as 
follows: 

A.,=ab (13.65) 
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It = _1_ a _f_( b_+_1_1_2_) 
2 J1i f(b) (13.66) 

where Al and A2 are first and second order L-moments. In practice these are replaced by their 
sample estimates. Hosking gave the following solution for a and b. Let t = A2/Al . For t between 
o and 0.5, Z = 1t e and b is obtained as 

b=(1-0J080z)/(z-o.05812z 2 +O.01765z 3 ) (13.67) 

and for t between 0.5 and 1, b is given as 

b=(O.7213z-0.5947 Z2 )/(1-2.1817 z+1.2113z 3 ) (13.68) 

With b obtained as above, a is got from 

a=ItJb (13.69) 

13.4 Comparative Evaluation of Estimation Methods 

13.4.1 APPLICATION TO UNIT HYDROGRAPH ESTIMATION 

The instantaneous unit hydrograph (IUH) of a drainage basin can be considered as a probability 
distribution. The IUH is the hydrograph of direct runoff occurring at the basin outlet due to the 
effective rainfall having unit volume, infinitesimally small duration, and occurring uniformly 
in the basin. If h(t) is the IUH ordinate at time t and t:. t is time interval> 0, then 

h(t) z 0, t z 0 (13.70) 

(13.71) 

r~ (f+t.t Jo h(t)dt<;; Jo <;; 1 ,t<;; 00 (13.72) 

Clearly, h(t) satisfies the qualifications of a probalitiy density function of a random variable t. 
This can also be perceived from a hydrologic standpoint. When an instantaneous burst of 
effecti ve rainfall of unit volume occurs uniformly in a basin, the direct runoff appears at the basin 
outlet. The time taken by a body of water to travel to the basin outlet depends upon the position 
where the travel is initiated and the path it follows. In a given basin there can be an infinite 
number of positions where raindrops will land and initiate their travel in association with 
topographic characteristics. Likewise, there can be an infinite number of paths of travel. These 
paths are carved by topographic slope configuration and channel network existing in the basin. 
The time of travel that water spends in following a given path depends on its composition. 
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Obviously, different paths may have different travel times. If it is assumed that the time of travel 
is a random variable then by dividing these times of travel into a finite number of class intervals, 
a frequency distribution of the time of travel can be constructed. Since the volume of effective 
rainfall is unity, the area occupied by this distribution will be unity. This distribution is then the 
same as the IDH. In other words, the basin IDH can be considered as a probability distribution 
of time of travel. Experimental and field experience suggests that this distribution can be 
represented reasonably well by a two-parameter gamma distribution. 

Table 13.1 Some pertinent characteristics of four experimental rainfall-runoff events. 

Rainfall Runoff 

Event Intensity Duration Depth Peak Peak time Duration 
(mmIh) (sec) (mm) (mmIh) (sec) (sec) 

(1) (2) (3) (4) (5) (6) (7) 

1 1l.6 111 0.36 4.2 205 796 

2 26.4 78 0.57 10.6 154 700 

3 60.7 71 1.19 33.2 102 545 

4 32.7 112 1.02 26.8 86 635 

Table 13.2 Parameters a and b of two-parameter gamma distribution estimated by various 
methods of four experimental rainfall-runoff events. 

Methods Event 1 Event 2 Event 3 Event 4 

a b (sec) a b (sec) a b (sec) a b 
(sec) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

MOM 3.24 89.40 4.33 39.80 3.63 33.50 2.31 47.80 

MOC 3.24 89.40 4.33 39.80 3.63 33.50 2.31 47.80 

MLE 3.30 87.80 5.60 30.80 5.40 22.50 3.70 29.90 

POME 3.30 87.80 5.60 30.80 5.40 22.50 3.70 29.90 

MOLS 4.25 70.00 5.00 40.00 5.00 30.00 4.50 30.00 

Singh and Chowdhury (1985) used data on four rainfall-runoff events observed at a large 
outdoor rainfall-runoff experimental facility located at Colorado State University, Fort Collins 
Colorado. The area covered by these events was approximately 296 m2• The rainfall intensity was 
uniform in both' space and time for each event. Because the surface of this facility was 
impervious, virtually the entire rainfall became runoff. Some pertinent characteristics of these 
events are given in Table 13.1. The unit hydrographs of these events were obtained by simply 
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dividing the runoff hydrographs by their corresponding volumes. Furthermore, because the 
duration of each event was very small, these unit hydrogrpahs would approximate the 
instantaneous unit hydro graphs. The 2-parameter gamma distribution was fitted to the unit 
hydrographs which was equivalent to fitting it to the observed runoff hydrographs. Parameters 
a and b of this distribution were estimated by POME, as well as by the methods of moments 
(MOM), cumulants (MOC), maximum likelihood estimation (MLE) and least squates (MOLS). 
The values of these parameters are given in Table 13.2. POME and MLE yielded identical 
parameter estimates, and so did MOM and Moe for all four events. The parameter estimates of 
POME were closer to MOM than MOLS for event 1, but the opposite was true for the remaining 
three events. 

Table 13.3 Errors in fitting ofthe gamma distribution to four experimental rainfall-runoff events 
by different methods 

Method Relative Error (%) in Mean Squared Deviation 
(Discharge) 

(1) Peak Discharge Time to Peak (4) 
(2) (3) 

Event 1 

MOM,MOe 11.86 0 0.181 

MLE,POME 11.31 0 0.186 

MOLS 5.45 -8.85 0.053 

Event 2 

MOM, MOe -2.66 16.86 6.687 

MLE,POME -14.02 8.13 5.549 

MOLS 6.45 -7.88 0.737 

Event 3 

MOM,Moe 8.16 13.62 76.32 

MLE,POME -6.91 4.21 55.21 

MOLS 16.10 -22.33 11.76 

Event 4 

MOM, MOe 7.49 23.83 61.66 

MLE,POME -6.36 9.70 46.28 

MOLS 6.21 -26.84 6.07 

[Relative error = [(observed quantIty-computrd quantIty)/observed quantIty] x 100; Mean squared 
deviation = Sum of squares of differences between observed and computed discharges, divided 
by the number of discharge values] 



217 

With the parameters estimated as above, the unit hydro graphs were used to regenerate 
the runoff hydrographs. Figures 13.1 to 13.4 compare observed runoff hydrographs with 
regenerated runoff hydro graphs of different methods for the four events. In reproducing peak 
discharge MOM and MOLS had a slight edge over POME but the difference was so minor as to 
be negligible. The time to peak was reproduced by POME significantly more accurately than 
MOM and MOLS. This is seen from Tables 13.3 and 13.4. When the gamma distribtuion fit to 
the entire hydro graph was examined then MOLS was slightly better than POME which was better 
than MOM. This is clear from Table 13.3 as well as Figures 13.1 to 13.4. On the whole, the 
rising hydrograph was better reproduced by MOLS than POME and MOM but the opposite was 
true for the recession hydrograph. The differences between fits of these methods grew with 
steepness in rise and fall of the runoff hydrograph as seen from Figures 13.1 to 13.4. 

Table 13.4 Average errors (ignoring algebraic sign) of different methods of fitting the gamma 
distribution 

Method RE in Peak (%) RE in Peak Time Average Deviation 
(%) in Real Time (sec) 

MOM,MOe 7.54 13.58 11 

MLE,POME 9.65 5.51 2 

MOLS 8.55 16.48 19 

RE = Relative Error 

Table 13.5 Values of entropy showing goodness of fit of each method to experimental data 

Method Event 1 Event 2 Event 3 Event 4 

MOM 6.39 5.76 5.48 5.54 

Moe 6.39 5.76 5.48 5.54 

MLE 6.38 5.65 5.32 5.38 

POME 6.38 5.65 5.32 5.38 

MOLS 6.31 5.85 5.56 5.50 

To further evaluate the goodness of fit of each method to the experimental data the 
entropy (I) was computed for each event as shown in Table 13.5. The value ofI was the smallest 
for POME except for the event 1 where MOLS had the smallest value. However, the differences 
in values of 1 computed by different methods were quite small, and hence the values were 
comparable. This means that these methods were comparable. Thus, it can be concluded that 
POME offered a promising alternative for parameter estimation. For these events the peak time 
was more accurately reproduced by POME than MOM and MOLS but the opposite was true for 
peak discharge. Furthermore, the recession hydro graph was better reproduced by POME than 
MOM and MOLS but the opposite was true for the rising hydrograph. 
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Figure 13.1 Comparison of observed and computed runoff hydro graphs for event 1. The methods 
of computation are MOM, MOC, POME, MLE and MOLS. 
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Figure 13.2 Comparison of observed and computed runoff hydro graphs for event 2. The methods 
of computation are MOM, MOC, POME, MLE and MOLS. 
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Figure 13.3 Comparison of observed and computed runoffhydrographs for event 3. The methods 
of computation are MOM, MOC, POME, MLE and MOLS. 
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Table 13.6 Some pertinent statistical characteristics of annual maximum discharge series for 
six selected river gaging stations. 

River Gaging Station 
IN I Area (sq.Km.) I 

I 
S, I C, 

I 
ek 

X (cu.mls) 

Comite River near Olive 38 375.55 238.2 174.5 0.7 2.52 
Branch, Louisiana 

Comite River near 38 735.56 315.7 166.8 0.54 2.77 
Comite, Luoisiana 

Amite River near 34 1888.00 745.1 539.5 0.71 3.03 
Magnolia, Louisiana 

SI. John River at Nine Mile 32 1670.0 699.0 223.7 0.41 3.01 
Bridge, Maine 

SI. John River at 36 3540.0 1449.7 517.7 0.35 2.55 
Dickey, Maine 

Allagash River near 51 1240.0 438.8 159.8 0.71 3.30 
Allagash Maine 

Table 13.7 Parameters ofthe garnmadistribution fitted to annual maximum discharge series by 
MOM, MLE and POME methods. 

River MOM MLE POME 

Gaging Station a I b a I b a I b 

Comite River near Olive 127.85 1.86 131.82 1.81 131.82 1.81 
Branch, Louisiana 

Comite River near 88.07 3.59 95.15 3.32 95.15 3.32 
Comite, Louisiana 

Amite River near 390.62 1.91 445.72 1.67 445.72 1.67 
Magnolia, Louisiana 

SI. John River at Nine Mile 71.61 9.76 70.98 9.85 70.98 9.85 
Bridge, Maine 

SI. John River at 184.91 7.84 187.62 7.73 187.62 7.73 
Dickey, Maine 

Allagash River near 58.18 7.54 55.97 7.84 55.97 7.84 
Allagash Maine 

13.4.2 APPLICATION TO FLOOD FREQUENCY ANALYSIS 

Singh and Singh (1985) used data on annual maximum discharge series for six selected river 
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gaging stations for fitting the two-parameter gamma distribution. Some pertinent characteristics 
of the discharge series are given in Table 13.6. These gaging stations are selected on the basis 
of homogeneity, completeness, independence and length of record. Each station had more than 
30 years of record. They evaluated and compared fitting of the gamma distribution to discharge 
series by the methods of moments (MOM), maximum likelihood estimation (MLE) and principle 
of maximum entropy (POME). Parameters a and b of the gamma distribution obtained by the 
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Figure 13.5 Comparison of observed and computed frequency curves for annual maximum 
discharge series for the Comite River basin near Olive Branch, Louisiana. 
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three methods for each discharge series are given in Table 13.7. Clearly, the parameter estimates 
by MLE and POME methods were, as expected, identical. Also these were not greatly different 
from those by MOM. This is further illustrated by Figures 13.5 and 13.6 which compare 
frequency curves generated by these methods for two sample gaging stations. POME was found 
to be superior to MOM for the data used. The SEF was computed with parameters estimated by 
each method for each discharge series, as given in Table 13.8. Consistently, the SEF values 
obtained by POME were less than or equal to those by MOM. This implies that POME was a 
better parameter estimation method than MOM. Thus, it can be concluded that POME offered 
a promising alternative for parameter estimation. 

Table 13.8 Values of entropy (lor SEF). 

River gaging station SEFof SEF SEF difference 
sample 

(I) (2) MOM POME MLE MOM POME MLE 
(3a) (3b) [(2)-(3a)] [(2)-(3a)] [(2)-(3b)] [(2)-(3c)] 

Comite River near Olive 3.592 3.162 3.166 3.166 0.430 0.426 0.426 
Branch, Luisiana 

Comite River near Comite, 3.664 3.343 3.349 3.349 0.321 0.315 0.315 
Louisaian 

Amite River near 3.397 2.946 2.977 2.977 0.451 0.420 0.420 
Magnolia, Louisiana 

St John River at Nine Mile 3.412 3.144 3.143 3.143 0.268 0.269 0.269 
Bridge, Maine 

St. John River at Dickey, 3.611 3.325 3.326 3.326 0.286 0.285 0.285 
Maine 

Allagash River near 3.781 3.544 3.540 3.540 0.237 0.241 0.241 
Allagash, Maine 
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CHAPTER 14 

PEARSON TYPE III DISTRIBUTION 

The Pearson type (PT) ill distribution is the generalized gamma distribution and is one of the 
most popular distributions for hydrologic frequency analysis. Bobee and Robitaille (1977) 
compared PT ill and log PT ill distributions using several long-term records of annual flood 
flows and found PT ill distribution to be preferable, especially when the method of moments 
(MOM) was applied to observed sample data. Bobee (1973), Chang and Moore (1983), among 
others, used it for flood frequency analysis. Markovic found practically no difference in fitting 
of Pearson and lognormal distributions to annual precipitation and runoff data. Matalas (1963) 
found PT ill distribution to be representative of low flows. Obeyesekera and Yevjevich (1985) 
presented a procedure for generation of samples of an autoregressive scheme that has an exact 
Pearson type ill distribution with given mean, variance and skewness. Harter (1958) prepared 
tables for percentage points of the PT ill distribution. Wilk et al. (1962) described a procedure 
for preparing probability plots for randon samples from an assumed PT ill distribution. Haktanir 
(1991) developed a practical method for computation of PT ill frequency factors. Shaligram and 
Lele (1978) analyzed hydrologic data using PT ill distribution and showed that the confidence 
intervals for this distribution were larger than for the Gumbel distribution. 

The Pearson type ill distribution has three parameters, which have been estimated in 
various ways. Ribeiro-Correra and Rousselle (1993) employed a hierarchical approach for 
regional curve fitting with higher-order moment ratios estmated over large areas. They combined 
this approach with an empirical Bayes approach for estimation of the scale parameter of PT ill 
distribution. Lall and Beard (1982) estimated PT ill moments and investigated into the bias of 
moment estimates of skew. Ding and Yang (1988) estimated parameters of PT ill distribution 
using the probability-weighted moments (PWM). They extended the PWM method to the 
samples with extraordinary values. Wu et al. (1991) developed the method of lower bound 
(MLB) for determining the design quantiles from PT ill distribution. Durrans (1992) modified 
the classical method of moments (MOM) using mean, variance and an extreme order statistic. 
Singh and Singh (1985) derived the PT ill parameter estimates using the principle of maximum 
entropy (POME). The method of maximum likelihood estimation (MLE) has been used for fitting 
the PT ill distribution to streamflow data (Matalas, 1963; Markovic, 1965; Domokos and Szasz, 
1968). The MLE estimates are not as mathematically tractable as moment estimates and are 
seemingly more difficult to use in operational programs such as the generation of synthetic 
streamflow sequences. Matalas and Wallis (1973) compared MOM and the method of maximum 
likelihood estimation (MLE) for parameter estimation and found MLE estimates to be less biased 
and less variable than MOM estimates. Buckett and Oliver (1977) compared MOM and MLE 
when fitting a PT ill distribution to streamflow data. They concluded that the MLE method gave 
much more satisfactory estimates of percentiles. From a practical point of view, a comparison 
between MLE and MOM (considering in the latter method different corrections of the coefficient 
of skewness C,) was made by Bobee and Robitaille (1977) on 18 samples of flood data and they 
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showed that: (1) corrections ofC, proposed by Bobee and Robitaille (1975) following the study 
of Kirby (1974) gave the most satisfactory results when using the method of moments, and (2) 
that MOM with correction of C, generally gave better results than the MLE method. Using 
Monte Carlo experimentation, Hoshi and Leeyavanjia (1986) evaluated the performance of six 
parameter estimation procedures for different sample sizes and different combinations of 
population statistics. They found that there was little advantage to using unbiased skew estimates 
in MOM for estimating the upper quantiles. They showed that the quantile-MLE, quantile­
moment and sex tile methods performed, in general, accurately. Singh and Singh (1985) found 
POME to be comparable to MLE and superior to MOM. 

If a random variable X has a Pearson type ill distribution then its probability density 
function (pdf) is given by 

f(x) =_1_( ~ )b-I exp [ _( x-c)] 
ar(b) a a 

(14.1 a) 

where a > 0, b > ° and ° < c < x are parameters. In general, parameter a can take on negative or 
positive values, but for negative values of a the distribution becomes upper bounded and is 
therefore unsuitable for frequency analysis of floods. The cumulative distribution function (cdf) 
of the PT ill distribution can be expressed as 

F(x) =_1_ (OO(X-C)b-Iexp(_x-c)dx 
arcb) Jo a a 

(14.1b) 

The Pearson type ill distribution is a three-parameter gamma distribution. If Y = (X-c)/a, then 
Y follows 

Then the cdf of Y is given by 

XO_c 

1 a 
F (y) =-- J l-I exp (- y) d y 

r (b) cO 

(14.2a) 

(14.2b) 

The value of X can be computed analytically in the same way as for the gamma distribution, 
except that the value of Y is calculated from its definition given above. 
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14.1 Ordinary Entropy Method 

14.1.1 SPECIFICATION OF CONSTRAINTS 

Taking logarithm of equation (14.1) to the base 'e' one gets 

c x InJtx) = -Ina -lnr(b) +(b-l)lna + - - - + (b-l)ln(x-c) (14.3) 
a a 

MUltiplying equation (14.3) by [-f(x)] and integrating between c to 00 one obtains the entropy 
function I(f): 

Iif) = -fJtx)lnJtx)dx = -f[-lna-lnr(b)-(b-l)lna 

c 1 f~ f~ dx + - ]Jtx)dx + - xJtx)dx -(b-l) In (x-c)Jtx) 
a ace 

(14.4) 

From equation (14.4) the constraints appropriate for equation (14.1a) can be written as 

(14.5) 

fc~ xJtx)dx =E[x] (14.6) 

fc~ln (x-c)Jtx)dx = E[ln(x-c)] (14.7) 

Equation (14.5) can be verified as follows. Substituting equation (14.1) in equation (14.5), one 
gets 

f~ Jtx) dx=fM_l_ (~)b-Iexp [- ( x-c)] dx 
c c a reb) a a 

(14.8) 

x-c dx 
Let - = y. Then dy = -. Therefore, equation (14.8) becomes 

a a 

14.1.2 CONSTRUCTION OF ZEROTH LAGRANGE MULTIPLIER 

The least-biased pdf, f(x), consistent with eq),lations (14.5) to (14.7) and corresponding to the 
principle of maximum entropy (POME), takes the form 
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(14.10) 

where .1..0' .1..\ and .1..2 are Lagrange multipliers. Substituting equation (14.10) in equation (14.5), 
we get 

(14.11) 

Therefore, the partition function is given by equation (14.11) as 

exp(Ao)= fcOOexp[-A\x-A2In(x-c)]dx = {OOexp[-A\x]exP[-A2In(x-c)]dx 

{OO exp[ -A) x] exp[ln(x-c) ~A2] dx = {OO (x-c) ~A2exp[ -A\x]dx 

(14.12) 

Substituting y = x-c and dy = dx in equation (14.8), one gets 

(14.13) 

Let AI Y = z. Then dz = AI dy. Therefore, equation (14.13) becomes 

(14.14) 

Since 

(14.15) 

(1-11.)= X 2 e~xdx= x 2e-xdx r ' froo I~A ~I froo ~A 
2 0 0 

(14.16) 
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equation (14.14) becomes 

(14.17) 

The zeroth Lagrange multiplier Ao is given as 

(14.18) 

The zeroth Lagrange multiplier is also obtained from equation (14.12) as: 

(14.19) 

14.1.3 RELATION BETWEEN LAGRANGE MULTIPLIERS AND CONSTRAINTS 

According to Tribus (1969) the relation between Lagrange multipliers and constraints is obtained 
by taking partial derivatives of the zeroth Lagrange multipliers with respect to other multipliers 
and then equating these derivatives to the constraints given by equations (14.16) and (14.17). 
Differentiating equation (14.19) With respect to AI and A2 . respectively, one obtains 

aAo fc~ exp[ -AIX - Azin(x-c)]dx 

aA1 f exp[ -AIX - A21n(x-c)]dx 

= - fc~ xexp[ -Ao - A1X - A21n(x-c)] dx = - fc~ xj(x) dx 

= -E[x] (14.20) 

aAo fc~ln(x-c)exp[ -AIX - A21n(x-c)]dx 

aA2 fc~ exp[ -A1X - A21n(x-c)]dx 

= - fc~ln(x-c)exp[ -Ao - A1X - A2 In(x-c)]dx 

= - fln(x-c)j(x)dx = -E[ln(x-c)] (14.21) 

Also differentiating equation (14.18) with respect to Alone gets 

aAo (A2 -1) 
-=-c+---
aA1 \ 

(14.22) 



236 

Equating equation (14.22) and (14.20), one gets 

I-A 
E[x] =c+ __ z 

A1 

Differentiating equation (14.18) with respect to Az, one obtains 

(14.23) 

(14.24) 

Equating equations (14.24) and (14.21), we get 

a InA1 + - [lnr(1-Az)] = -E[ln(x-c)] (14.25) 
aAz 

The PT ill distribution has three parameters. Therefore, equations (14.23) and (14.25) are not 
sufficient and another equation is needed. This is obtained by recalling that 

(14.26a) 

Therefore, 

(14.26b) 

where OZ (x) is variance of x. 

14.1.4 RELATION BETWEEN LAGRANGE MULTIPLIERS AND PARAMETERS 

Let 1 - Az = b. Then [ablaAz] = - l. In terms of b we find from equations (14.23) to (14.25), 

This leads to 

b 
E[x] =c + -

A1 

E[x] = c + ab 

a ab -E[ln(x-c)] =lnA1 +-Inr(b)-
ab aA2 

(14.27) 

(14.28) 

(14.29) 

(14.30) 
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E[ln(x-c)] = web) -lnA[ (14.31a) 

The function, 1jJ(z) = d [ In [' (z)]/dz is called the digamma function. Equation (14.31a) yields 

E[ln(x-c)] = -1jJ (b) + In a (14.31b) 

Substituting equation (14.18) in equation (14.10), one gets 

(14.32) 

A comparison of equation (14.32) with equation (14.1 a) shows that 

(14.33) 

(14.34) 

14.1.5 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

The PT 3 distribution has 3 parameters: a, b and c. Equations (14.23), (14.25) and (14.26) relate 
the Lagrange multipliers to the known constraints and the variance of x, and equations (14.33) 
and (14.34) relate the Lagrange multipliers to parameters. Eliminating the Lagrange multipliers 
between these two sets of equations, we get parameters in terms of the constraints, as given by 
equations (14.29), (14.30) and (14.31). These equations are nonlinear but can be solved 
iteratively. 

An example problem is given to illustrate the procedure. To summarize, the mean of 
X is 

The variance of X is 

Furthermore, 

Therefore, 

1 n - L In(xi-c)= w(b)+lna 
n i~[ 

(14.35) 

(14.36) 

(14.37) 

(14.38) 
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Thus, 

Therefore, 

2 

X =( ax )112 b +c =a2 b 112 +c 
b x 

1 n - L In[xi - c] = Web) = Ina 
n i=1 

1 n _ a - L In[x.-x+a b Il2]=w(b)+ln[-X ] 
n i=1 'x b 112 

1. t In[x.-x+a bll2]=lnb_~ __ I_+_1_-_1_ 
n ;=1 'x 2b 12b 2 120b 4 252b 6 

-!lnb + Ina 
2 x 

1. t In[xl -x+ab I/2]=!lnb+lna _~ __ l_ 
n i=1 x 2 x 2b 12b 2 

1 1 
+-----

120b 4 252b 6 

(14.39) 

(14.40) 

(14.41) 

(14.42) 

(14.43) 

(14.44) 

From the data, it is known that x = 11151.842 and S = 5889.9675. Using equations (14.41)-
(14.43), the parameters are found to be: x 

a = 2038.3101; b = 8.3499768; c = - 5868.0003 

To verify the accuracy of these parameter estimates, we compute 

t In (x; --c) = 367.9648 
i=l 

From equation (14.29), 17019.842 - 5868.0003 = 11151.842, which is the mean. 

From equation (14.30), 2038.3101 x (8.3499768)OS = 5889.9674, which is the standard deviation. 

From equation (14.34), the left hand side (LHS) = (367.9648)/38 = 9.68 



The right hand side (RHS) = 1/1(8.3499768) + In(2038.3101) 

= 2.0611878 + 7.618764 = 9.6810642 

The LHS is about the same as the RHS. This concludes estimation of a, b and c. 
If the coefficient of skeweness of the data is computed then 

Cs = 0.708; x = 26317.65; S = 18773.359 

c = C [1 + ~ ] [n(n -1) ]0.5 
S S n n-2 

=0.708[1 +~] [34 x 33]°5 =0.9263812 
34 32 

b = ( 2 )2 =4.6610153 
0.9263812 

18773.359 
a= ------- = 8695.6434 

(4.6610153)°·5 

c = 26317.65 - 18773.359 x (4.6610l53)U5 = -14212.877 

1 n - L In (x. - c) = 347.30754 
n i ~ 

1/1(4.6610153) + In(8695.6434) = l.428142 + 9.0705774 = 10.498719 

1 n - L (Xi -c) = 10.214928 
n i 

This concludes the computation of parameters. 

14.l.6 DISTRIBUTION ENTROPY 

Equation (14.4) gives the distribution entropy. It can be rewritten as 

I(x) = - r f(x) In f(x)dx 

r c f~ 1 f~ =[lna+ln (b)+(b-l)lna--] f(x)dx+- xf(x)dx 
a cae 
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- (b-l) {~ In(x-c) f(x)dx 

c 1-= [Ina +Inr(b) +Inah-I --] +-x-(b-l) E[in(x-c)] 
a a 

=In (abrcb))-~+':'- (b-l)E[in(x-c)] 
a a 

=In (abr(b))-~+':'- -(b-l)E[ln(x-c)] 
a a 

14.2 Parameter - Space Expansion Method 

14.2.1 SPECIFICATION OF CONSTRAINTS 

(14.45) 

For this method equation (14.5) holds and the other two constraints one defined somewhat 
differently and can be written, following Singh and Rajagopal (1986), as 

f ~ (x-c )f(x)dx = E[ x-c] 
c a a 

(14.46) 

f ~ln( x-c )b-I!(x)dx=Eln[ x-c ]b-l 
c a a 

(14.47) 

14.2.2 DERIVATION OF ENTROPY FUNCTION 

The least -biased pdf corresponding to the principle of maximum entropy (POME) and consistent 
with equation (14.5), (14.46), and (14.47) takes the form 

x-c x-c lex) =exp[ -AO -\ (-) -Azln[-]b-l] (14.48) 
a a 

where A.O,A. 1, and Az are Lagrange multipliers. 

Insertion of equation (14.45) into equation (14.5) yields 

(14.49) 
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The zeroth Lagrange multiplier is given as 

(14.50) 

The zeroth Lagrange multiplier is also obtained from equation (14.49) as 

(14.51) 

Introduction of equation (14.49) in equation (14.48) yields 

, I -(b-I) 
11.2 X-C X-C b-I 

fix) = exp[ -AI (-) -A21n(-) ] 
ar(1-Aib-1)) a a 

(14.52) 

A comparison of equation (14.52) with equation (14.1) yields 11.1 =1 and 11.2=-1. 
Taking logarithm of equation (14.52) results in 

Infix) = -Ina + (I-Ai b - 1))lnAI -lnr(l-A2(b-l)) -AI( x-c) + In( x-c) -A,(b-I) 

a a 

(14.53) 
Thus, the entropy I(f) of the PT ill distribution can be expressed as 

x-c 
+Aib-l)E [In(-)] (14.54) 

a 

This is the entropy function of PT ill distribution. 

14.2.3 RELATIONBETWEENPARAMETERSANDCONSTRAINTS 

According to Singh and Rajagopal (1986) the relation between distribution parameters and 
constraints is obtained by taking partial derivatives of the entropy function given by equation 
(14.54) with respect to Lagrange multipliers as well as distribution parameters and then equating 
these derivatives each to zero. To that end, taking partial derivative of equation (14.54) with 
respect to a, b, c, AI' and A2 separately, and equating each derivative to zero yields: 
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aI 1 x-c 
- =0 = -O-AzCb-1))- + E(-) 
aA 1 A1 a 04.55) 

ill x~ - =0 = +(b-1)lnA I +(b-1)E[ln(-)] -(b-1)wO-Alb-1)) 
aAz a 04.56) 

where 1/J is a digamma function = d [ In r (x)]/dx. 

aI 1 AI x-c AzCb-1) 
-=O=+---E [-] 
aa aa a a 

04.57) 

04.58) 

aI AI A2(b-1) a 
-=0= --- E[-] 
ac a a x-c 

04.59) 

Note that A1 =1 and A2 = -1. Simplification of equations 04.55) to 04.59), respectively, yields 

E[ln( x-c)] = W(I0,K = O-Alb-l)) 
a 

x-c 
E[ln(-)] = W(K) 

a 

a 1 
E[-]=­

x-c b-l 

(14.60) 

04.61) 

04.62) 

04.63) 

04.64) 

Equations 04.61) and (14.63) are the same, and so are equations (14.60) and (14.62). Therefore, 
the parameter estimation equations are equations (14.60), (14.63), and (14.64). 
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14.3 Other Methods of Parameter Estimation 

14.3.1 METHODOFMOMENTS 

The r-th moment M;of equation (14.1) about a point 'c' is 

C foo 1 x-c b 1 Mr = (x-c)'--(-) - exp[ -(x-c)/a] dx 
e ar(b) a 

(14.65) 

Let z = (x-c)/a. Then equation (14.65) reduces to 

Me =~ rOOZr+b-leXp(-Z)dZ=~r(r+b) 
r r(b)Jo reb) 

(14.66) 

Since the PT ill distribution has three parameters, it will suffice to determine the first three 
moments for the method of moments (MOM). 

Mt=ab (14.67) 

M2
C = a2 b(b + 1) (14.68) 

M3e = a3 b(b + 1) (b + 2) (14.69) 

The moments given by equation (14.66) can be converted to the moments M~ about 
the origin by using the following expression: 

(14.70) 

Specifically, 

° M, =ab+c (14.71) 

M~ = a2 b2 + a2 b + 2 abc + c2 (14.72) 

M~ = a3 b(b + 2)(b + 1) + 3 a2 b c(b + 1) + 3 a b c2 + c3 (14.73) 

Therefore, 

o -
M, =x=ab+c (14.74) 

M2 = Var(x) = M~ _(M,O)2 = a2 b (14.75) 
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M M o 0 0 2 03 3 b 
3 = 3 - M2 MI + (M1 ) = 2 a (14.76) 

where M2 and M3 are the second and third moments of the distribution about the centroid. Thus, 
the equations to determine a, b, and c are 

x=ab+c (14.77) 

(14.78) 

c = M 1M 3/2 = 21b 0.5 
s 3 2 (14.79) 

Bobee and Robitaill,e (1975) have shown that the sample coefficient of skewness given by 
equation (14.79) should be corrected for bias as 

(14.80) 

where n is the sample size and C s * is the biased value of C, . 

14.3.2 METHOD OF MAXIMUM LIKELIHOOD ESTIMATION 

For the method of maximum likelihood estimation (MLE), the likelihood function, L, of 
receiving the sample data D ;: {x" x2, ••• , xn } from the PT ill distribution, given the values of 
a, b, and c, is: 

L(D I a,b,c) = IIflx) (14.81) 
i=1 

Therefore, 

_ 1 Xl -c Xn -C b-l 
L(D I a,b,c)- (-... --) 

a n[r(bW a a 

X -c X -c 
exp[ _(_1_ + ... +_n_)] (14.82a) 

a a 

The MLE method involves finding the values of a, b, and c which simultaneously maximize the 
likelihood of observing the data from a PT ill population. If L(D I a, b, c) is maximal, then so 
is In L(D I a, b, c). 

n 1 n 

In L = - n In a - n In r (b) + (b -1) LIn (Xi - c) - n (b -1) In a - - L (Xi - c) 
i=l a i=1 

(14.82b) 

Thus, values of a, b, and c are sought which produce 



a 
-[lnL(Dla,b,c)] =0 aa 
a 

-[lnL(Dla,b,c)] =0 
ab 

a 
-[lnL(Dla,b,c)] =0 ac 

Equations (14.83)-(14.85) lead to following estimation equations: 

nb 1 n --- L (x.-c) =0 
a a 2 ;=1 I 

n 

n1jT(b)- L In(x;-c)+nlna=O 
;=1 

245 

(14.83) 

(14.84) 

(14.85) 

(14.86) 

(14.87) 

(14.88) 

where 1jT(b) = d[ln r(b)]/db is the digamma function. Equations (14.86)-(14.88) are solved 
iteratively, as done by Matalas and Wallis (1973). It must be noted that a solution does not 
always exist for very small sample skew Cs . Furthermore, when b is less than 1, there is no 
solution; thus, the coefficient of skewness must not exceed the value of 2. When the skewness 
coefficient is greater than 2, the conditional MLE method of Bobee and Ashkar (1991) is 
recommended for use. 

14.3.3 METHOD OF PROBABILITY-WEIGHTED MOMENTS 

The PT ill distribution cannot be expressed in inverse form and therefore its probability-weighted 
moments (PWMs) are not easy to obtain. However, Hosking (1986,1990) derived these and are 
given in terms of L-moments as follows: 

L1 =c+ab 

L 1 r(b+O.5) 

2 = jiaf'(bj 

(14.89) 

(14.90) 

(14.91) 

where L j , i=I,2,3, are L-moments, and Ix (., .) is the incomplete beta function. Hosking (1991) 
gave an approximate solution of equation (14.91) which is reproduced here. For '3 greater than 
or equal to 1/3 and t = 1- '3 , 
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0.36067 t-0.59567 t 2 +0.25361t 3 
b = -1--2.-7 8-8-6-1-t +-2-.5-0-9-6--:t 2'---0-.7-7-0-45-t-=-3 (14.92) 

and for "3 less than 113 and t = 3 1t "3 2 , 

1 + 0.2906 t 
b=------~------7 

t+0.1882t 2 +0.0442t 3 (14.93) 

With the value ofb obtained as above, the value of a is obtained from equation (14.90) and 
then the nvalue of c from equation (14.89). 

14.4 Comparative Evaluation of Estimation Methods 

The PT III distribution has found particular application in stochastic analysis of annual flood 
discharges. Although the distribution followed precisely by floods is unknown, the application 
of PT III distribution is justified by a combination of experience and its goodness of fit to 
empirical data. Singh and Singh (1985) applied the MOM, MLE and POME methods of 
parameter estimation to annual maximum discharge data for six selected rivers, and their work 
is summarized here. Pertinent characteristics of the data are given in Table 14.1. These data were 
selected on the basis of length, completeness, homogeneity, and independence of record. Each 
gaging station had a record length of more than 30 years. 

Table 14.1 Pertinent characteristics of data of six selected rivers 

River Gaging Station N Mean Standard 
x Deviation 
(m'/s) Sx 

St. Francis River near 31 215.3 84.4 
Connors, New Brunnswick 

Fish River near Fort Kent, 53 241.1 71.4 
Maine 

St. John River below Fish 56 2405.2 754.1 
River, at Fort Kent, Maine 

St. John River at Ninemile Bridge, 32 699.0 223.7 
Maine 

St. John River at Dickey, Maine 36 1449.7 517.7 

Allagash River near 51 438.8 159.8 
Allagash, Maine 

Skeweness 
Cs 

0.53 

0.30 

0.43 

0.41 

0.35 

0.71 

Kurtosis 
Ks 

3.25 

3.45 

3.22 

3.01 

2.55 

3.30 
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Table 14.2 Parameter estimates by MOM, MLE and POME methods. 

Values Methods of Parameter Estimation 
River Gaging Station of Parameters 

MOM MLE POME 

a 28.33 27.74 27.70 
SI. Francis River near Connors, New b 8.86 9.10 9.03 
Brunnswick c - 35.84 - 35.84 - 35.73 

a 12.48 12.35 12.35 
Fish River near Fort Kent, b 32.69 33.03 33.00 
Maine c -167.00 -167.00 -167.50 

a 188.30 188.40 188.45 
St. John River below Fish b 16.03 16.02 16.01 
River, at Fort Kent, Maine c - 614.80 -614.80 - 614.50 

a 57.69 55.35 55.35 
St. John River at Ninemile b 15.04 15.67 15.65 
Bridge, Maine c -168.60 -168.60 - 168.60 

a 113.20 108.00 108.00 
St. John River at Dickey, b 20.91 21.90 21.90 
Maine c -918.30 -918.30 918.30 

a 65.71 64.30 64.30 
Allagash River near Allagash, b 5.91 6.03 6.03 
Maine c 50.35 50.35 50.35 

Table 14.3 Root mean square error and bias by MOM, MLE and POME methods for six 
selected rivers. 

RMSE BIAS 
Station MOM MLE POME MOM MLE POME 

St. Francis River near Connors, 0.0941 0.0995 0.0977 1.3667 1.3724 1.3927 
New Brunswick 

Fish River near Fort Kent, 0.1010 0.1029 0.1010 1.7459 1.7536 1.7603 
Maine 

St. John River below Fish River 0.1600 0.1597 0.1594 1.5142 1.5939 1.5910 
at Fort Kent, Maine 

St. John River at Nine 0.0667 0.0690 0.0685 1.1603 1.2021 1.2038 
Mile Bridge, Maine 

St. John River at Dickey, Maine 0.1065 0.1037 0.1037 1.5754 1.5710 1.5710 

Allagash River near 0.0929 0.0929 0.0929 1.7115 1.7035 1.7305 
Allagash, Maine 

The parameters estimated are summarized in Table 14.2. For two sample gaging 
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stations a comparison of observed and computed frequency curves is shown in Figures 14.1 and 
14.2. The observed frequency curve was obtained by using the Gringorton plotting position 
formula. The parameter estimates obtained by the POME and MLE methods were almost 
identical. Consequently, the frequency curves obtained from these methods were also identical. 
POME does not require the use of coefficient of skewness whereas MOM does. In this way the 
bias is reduced when POME is used to estimate the parameters of PT ill distribution. 
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Figure 14.1 Comparison of observed and computed frequency curves for annual maximum 
discharge series for the St. Francis River basin near Connors, New Brunswick, 
Maine. 
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To compare these methods further, the root mean square error (RMSE) and bias were 
computed as given in Table 14.3. For a given river, the values of RMSE of different methods 
differed from one another at the second or third decimal place only. This means that the three 
methods were comparable for the data used. It should be emphasized that the smallest RMSE 
value does not necessarily lead to the best fit. A comparison of BIAS values of the three methods 
also reflected what was indicated by the RMSE values. 
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Figure 14.2 Comparison of observed and computed frequency curves for annual maximum 
discharge series for the St. John River basin at Dickey, Maine. 
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CHAPTER 15 

LOG-PEARSON TYPE III DISTRIBUTION 

The log-Pearson type 3 (LP3) distribution has been one of the most frequently used distributions 
for hydrologic frequency analyses since the recommendation of the Water Resources Council 
(1967, 1982) of the United States as to its use as the base method. The Water Resources Council 
also recommended that this distribution be fitted to sample data by using mean, standard 
deviation and coefficient of skewness of the logarithms of flow data [i.e., the method of moments 
(MOM)]. A large volume of literature on the LP3 distribution has since been published with 
regard to its accuracy and methods of fitting or parameter estimation. McMahon and Srikanthan 
(1981) and Srikanthan and McMahon (1981) examined the applicability ofLP3 distribution to 
Australian rivers and questioned the assumption of setting to zero the coefficient of skewness of 
logarithms of peak discharges that were not statistically different from zero. They evaluated the 
effect of sample size, distribution parameters and dependence on peak annual flood estimates. 
Gupta and Deshpande (1974) applied LP3 distribution to evaluate design earthquake magnitudes. 
Phien and Iivajirajah (1984) applied LP3 distribution to annual maximum rainfall, annual 

streamflow and annual rainfall. Wallis and Wood (1985) found, based on Monte Carlo 
experiments, that the flood quantile estimates obtained by using an index flood type approach 
with either a generalized extreme value distribution or a Wakeby distribution fitted by PWM 
were superior to those obtained by LP3 distribution with MOM -based parameters. This finding 
was challenged later by several investigators (Beard, 1986; Landwehr et al., 1986). 

The Water Resources Council recommended the use of a generalized skew coefficient. 
Bobee and Robitaille (1975) proposed a correction for bias in estimation of the coefficient of 
skewness. Tung and Mays (1981) investigated various methods of determining generalized skew 
coefficients. They introduced a method for determining generalized skew coefficients using a 
weighting procedure based on the varaince of regional map skew coefficients and variance of 
sample skew coefficients. Oberg and Mades (1987) evaluated several techniques of estimating 
generalized skew of LP3 distribution for lllinois rivers: (1) a generalized skew map of U.S., (2) 
an isoline map, (3) a prediction equation, (4) a regional mean skew. They found no appreciable 
difference between flood estimates computed using the variations ofthe regional mean technique 
and flood estimates using the skew map prepared by the Water Resources Council. Bobee (1975) 
showed that the method of moments recommended by the Water Resources Council (1967) 
would introduce bias in fitting LP3 distribution because the method of moments (MOM) used 
logarithms of observed data and not the moments of the observed values. He used a method 
which retained the moments of the original data. Ashkar and Bobee (1987) and Bobee and 
Ashkar (1988) used four different versions of MOM and obtained a generalized MOM (GMOM). 

V. P. Singh, Entropy-Based Parameter Estimation in Hydrology
© Springer Science+Business Media Dordrecht 1998
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They concluded that one version of GMOM might be best for estimating high flows (flows above 
the range covered by the data) and another for estimating low flows. 

U£ing simulation, Ouarda and Ashkar (1998) evaluated the effect of trimming on LP3 
flood quantile estimates. They examined the effect of various proportions of symmetric trimming 
on the estimation of moments, distribution parameters, and quantiles. The influence of sample 
size and parent distribution parameters on the estimation performance was also investigated for 
several return periods and for three fitting methods. Cohen et al. (1997) developed the expected 
moments algorithm (EMA) for computing moments-based flood quantile estimates when 
historical flood information was available. EMA can utilize three types of at-site flood 
information: systematic stream gage record, information about the magnitude of historical flood, 
and knowledge of the number of years in the historical period when no large flood occurred. 
Based on Monte Carlo simulations, they showed that EMA was more efficient than MOM and 
nearly as efficient as MLE. Rao (1980a, b, 1981, 1983a,b 1988) evaluated the properties and 
results ofLP3 distribution in a general fashion and proposed a method of mixed moments (MIX) 
to estimate LP3 parameters. He found that MIX using the mean and variance of real data and the 
mean of log data possessed superior statistical properties to MOM. Song and Ding (1988) 
applied the probability weighted moments (PWM) to estimate the parameters ofLP3 distribution. 
Their results of Monte Carlo experiments showed that PWM compared favorably with MOM and 
was equally efficient when compared with MLE and other curve fitting methods. Condie (1977) 
derived LP3 parameters using the method of maximum likelihood estimation (MLE). By fitting 
37 long-term unregulated flood data sets in Canada, he concluded that MLE was superior to 
MOM. However, Nozdryn-Plotnicki and Watts (1979) found in their simulation study of the 
standard error of the T -year flood that MLE and MOM were almost comparable, and hence they 
suggested the use of MOM because of its computational ease. 

Phien and Hsu (1985) compared a number of techniques for LP3 parameter estimation. 
These were MOM and modified versions of MOM. Singh and Singh (1988) estimated LP3 
parameters using the principle of maximum entropy (pOMB) and found it comparable to MOM 
and MLE for historical data used. Phien and Hira (1983) estimated LP3 parameters using four 
methods: MLE, direct and indirect MOM, MIX, method of Bobee (1975), and other versions of 
MOM. They found the MIX method, consisting of the first two moments of the original data and 
the variance of the log-transformed values, to be providing the best estimates. Arora and Singh 
(1987a, b, 1989) made a comparative evaluation of different estimators of LP3 distribution: 
Direct and indirect MOM, MIX, MLE, and POME. Using Monte Carlo experiments, they found 
MIX to be markedly superior to other methods in terms of both resistance and efficiency of 
estimation. 

Benson (1967) reported on uniform flood-frequency estimating methods for federal 
agencies. Among 2-parameter gamma, Gumbel, log-Gumbel, log-normal, Hazen and LP3 
distributions, the LP3 distrribution was selected as the base method, with provisions for 
departures where justified. Reich (1970) analyzed flood peaks from Pennsylavanian streams 
using Gumble, log-Gumbel, and LP3 distributions. He found the Gumbel distribution to be 
generally applicable. Shen et al. (1980) investigated the tail behavior in extreme events using LP3 
and Gumbel distributions and found LP3 distribution to be a better description of field data. Rao 
(1981) compared 3-parameter distributions, including LP3, Pearson type 3 (P3), lognormal 
(LN3), and Weibull (W); and presented bounds, negative areas of distribution and selected 
quantiles. The choice of the best distribution was not clear and depended on the sample statistics 
and the choice of the T-year flood. Loganathan et al. (1986) analyzed frequencies of low flows 
using a mixed LP3, a double bounded probability density function, partial duration series, and 
a physically based approach. The results of LP3 model were consistent with other methods. 
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Tasker (1987) estimated 7-day, lO-year and 7-day 20-year low flows using bootstrap using the 
hypothetical LP3 and W distributions. The use of these distributions led to lower mean square 
error than did the Box-Cox transformation and the log-Boughton method. In statistical modeling 
of annual maximum flows of Turkish rivers, Haktanir (199 I) compared LN3, P3, LP3, EV I, log­
Boughton, log-logistic (LL), and smemax distributions at 112 sites representing 23 major basins 
and and did not find a single distribution performing consistently better. LP3 and LL performed 
better more times than others. Vogel et aI. (1992) discussed flood-flow frequency model selection 
in southwestern United States. Using flood flow data at 383 sites, they found LP3, generalized 
extreme value (GEV) and two-parameter and three-parameter LN distributions to provide a good 
approximation to flood flow data in this region. Bobee et aI. (1993) reported on a systematic 
approach to comapring distributions in flood frequency analysis. 

Hoshi and Burges (1981a) investigated sampling covariance structures of estimated 
parameters for LP3 dsitribution from sample estimates of mean, coefficient of variation and skew 
coefficient in the natural domain. They showed that there was no justification for use of 
logarithmic skew coefficients or the regional skew estimates in log space. Hoshi and Burges 
(l981b) developed an approximate method for computing the derivative of a standard gamma 
quantile with respect to the distribution shape parameter necessary for estimating the sampling 
variance of a specified quantile. Ashkar and Bobee (1988) derived confidence intervals for flood 
events under LP3 distribution. Condie (1977) used MLE to derive the T -year event and its 
asymptotic standard error. Philon and Admowski (1993) derived the asymptotic standard error 
of estimate of the T -year flood. 

Let Y = In X where X is a positive random variable. If Y has a Pearson type (P) III 
distribution then X will have a log-Pearson type (LP) III distribution with probability density 
function (pdf) given by 

(15.1) 

where a > 0, b > 0 and 0 < c < In x are the scale, shape and location parameters, respectively. The 
LP IIII distribution is a three-parameter distribution. Its cumulative distribution function (cdf) 
can be expressed as 

F(x) =_1_ r~ l. ( Inx-c )b-l exp ( _ ( Inx-c)]dx 
a reb) Jo x a a 

(15.2) 

One can verify iff(x) given by equation (15.1) is a pdf as follows: 

f ~j(x)dx=1 
e' 

(15.3a) 

Substituting equation (15.1) in equation (15.3), one gets 

(15.3b) 



255 

Let (lnx-c)la = y. Then (dyldx) = (alx), and dx = xady. 

If x=e c theny= [(lne C-c)la] = [(clne-c)la] =[(c-c)la]. Substitutingthesequantitiesin 
equation (1S.3b), one gets 

fix) = _1_ r~ 1. yb-I e -Y x a dy = _1_ r~ e -Y yb-I dy = reb) (b) 
a reb) Jo x reb) Jo r 

(lS.3c) 

Ify = [In (x) - c ]1 a is substituted in equation (15.2) the following is the result: 

1 1Y F ( y ) = r (b) 0 /-1 exp ( - y ) dy (15.4) 

Equation (15.4) can be approximated by noting that F (y ) can be expressed as a Chi-square 
distribution with degrees offreedom as 2b and chi-square as 2y. This approximation is given in 
Chapter 13. 

It may be useful to briefly discuss some of the characteristics of the LP ill distribution. 
To that end, the mean, variance and skewness coefficients of both X and Y are given. For Y 
these, respectively, are: 

Mean: Ily = c + a b 

Variance: Oy 2 = b a2 

lal 2 
Skew: r y = -;; bll2 

The moments of X about the origin can be written as 

, exp(rc) 
J1 = , l-ra>-O,r=O,1,2, ........ 

r (l-ra)b 

(1S.Sa) 

(1S.5b) 

(lS.5c) 

(1S.6a) 

From equation (15 .6a), the mean, coefficient of variation (CV), coefficient of skewness ( skew), 
and kurtosis of X are given as 

Mean: 
exp(c) 

J1= 
(l-a )b 

(lS.6b) 
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Variance: (j; = exp (2 c) e A (15.6c) 

Coefficient of Variation (CV): f3 = ( 1- a ) b e A 112 (15.6d) 

Skew: r = [ 1 
(1-3a)b 

3 2 ------+ l/ A 312 (156 ) 
(1- a ) b (1- 2 a ) b (1 _ a ) 3b . e 

Kurtosis: 

A _ 1 
-[(1-4a)b 

where 

4 6 
----~------~+----~~----~ 
(1-a)b (1-3a)b (1-a)2b (1-2a)b 

1 
A-[--­

- (1-2a)b (1- a ) 2b 1 

3 A-2 

(1_a)4 b l e 

(15.6f) 

(15.6g) 

It is to be noted that the coefficient of variation, skewness, and kurtosis in equations (15.6e ) -
(15. 6f) are independent of the location parameter c. It should also be noted that higher order 
moments of order r do not exist if the value of a is greater than 1/r (Bobee and Ashkar, 1991). 

Consider equation (15.5a). If a >- 0, then skew is greater than zero, implying that Y is 
positively skewed and c -<Y -<00. In this case, X is also positively skewed (Rao, 1980a), and exp 
(c) -<X -<00 . If a -<0, then skew is less than zero, implying that Y is negatively skewed and - 00 
-<Y -<c. In this case, X is either positively skewed or negatively skewed depending on the values 
of parameters a and b, and - 00 -<X -<exp (c). For this case the density function f (x) = 0, and may 
be arbitrarily defined as zero. 

The overall geometric shape of the LP ill distribution is governed by parameters a and b 
(Rao, 1980a; Bobee, 1975). The pdfis capable of assuming diverse shapes, such as reverse J, U, 
J, and, of course, unimodal (skewed) bell shape. Hoshi and Burges (1981a) point out that ify -<p3 
+ 3P, then a -<0,0 -< x -<exp (c), kurtosis of the LP ill distribution is less than the kurtosis of the 
three-parameter lognrmal distribution and vice versa. The LP ill distribution degenerates to the 
lognormal distribution when parameters a and b become zero and infintely, respectively ( or 
equivalently, y = p3 + 3p ,and y = 0). For flood frequency analysis, only values of b greater 
than one and 1/a greater than zero are of interest. Negative coefficients of skew correspond to 
negative a values and the distribution would then become upper bounded. Under these 
conditions, this might be considered for low flow analysis but would be unsuitable for flood 
analysis. 

15.1 Ordinary Entropy Method 

15.1.1 SPECIFICATION OF CONSTRAINTS 

Taking logarithm of equation (15.1.) to the base 'e' , one obtains 



lnx-c lnx-c 
lnj(x) = -lnar(b) -lnx+(b-I)ln[ --] - (--) 

a a 
lnx c -Ina r(b) -lnx+(b -I )In[lnx-c] -(b-l)lna --+-
a a 

Multiplying equation (IS.7a) by -1, we get 

c 1 -Infix) =lna r(b) - - +(b-l)lna +( 1 + - )lnx -(b-l)ln[ lnx-c] 
a a 
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(1S.7a) 

(1S.7b) 

Multiplying equation (IS. 7b) by f(x) and integrating between e C and 00, the result is the 
entropy function: 

-f~ fix) Infix) dx = [Ina r(b) -~ +(b-l)lna] f~ fix) dx 
e C a e C 

a+l f~ f~ dx + (~) eC lnxj(x)dx-(b-l) ecln(lnx-c)fix) 
(IS.7c) 

From equation (1S.7c) the constraints appropriate for equation (1S.1) can be written as: 

f ~ fix)dx = 1 
e C 

(1S.8) 

f~ lnxfix)dx =E[lnx] =y 
e C 

(IS.9) 

f.: In (lnx-c )fix) dx =E [In (lnx-c)] (IS. 10) 

IS.1.2 CONSTRUCTION OF ZEROTH LAGRANGE MULTIPLIER 

The least-biased pdf f(x), consistent with equations (1S.8) to (1S.lO) and based on the principle 
of maximum entropy (POME), takes the form: 

fix) =exp[ -AO - AIlnx - A2In(lnx-c)] (1S.11) 

where Ao,AI , and A2 are Lagrange multipliers. Substitution of equation (1S.11) in equation 
(1S.8) yields 
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(15.12) 

Equation (15.12) gives the partition function function as 

exp(} .. o) =foo exp[ -AIlnx-A2In (lnx-c)]dx 
e' 

(15.13) 

Equation (15.13) is simplified as 

exp(Ao) =foo exp[lny -AI] exp[ In (lnx-c -A2)] dx =foo x -AI(lnx-c)-A2dx 
e C e C 

(15.14) 

Let In x--c=y. Then, In x = y + c; x = exp(y+c); (dy/dx) = (lIx); dx = xdy; and dx = exp(y+c) 
dy. Substituting these quantities in equation (15.14), we get 

exp(A)= (oo[e Y+c fAI y -A2 e Y+C dy = (00 (eY eCfAly -A2 eY e C dy 
o Jo Jo 

= exp [c-c AI] 1000 exp[ -AlY + y] Y -'-2 dy (15.15) 

= exp[ -C(AI-l)] 1000 exp[-Y(AI -l)] y-'-2 dy 

Let y( AI-I) = z. Then y = [ZI(A I -l)], and (dzldy) = (AI-I). Therefore, equation (15.15) 
becomes 

(15.16) 

Since 

(15.17) 

equation (15.16) reduces to the partition function: 

(15.18) 

Therefore, the zeroth Lagrange multiplier is obtained from equation (15.18) as 
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(15.19) 

The zeroth Lagrange multiplier is also obtained from equation (15.13) as 

(15.20) 

14.1.3 RELATION BETWEEN LAGRANGE MULTIPLIERS AND CONSTRAINTS 

Differentiating equation (15.11) with respect to A1 and A2 , one gets 

f~ Inx exp[ - A\lnx - A2ln(lnx -c) ] dx 
e' 

= - f mInx exp[ - AO - A\ lnx - A2 In (lnx - c ) ] dx 
e' 

= -fm lnxj{x) dx = - E[lnx] 
e' 

(15.21) 

f m In(lnx -c) exp[ - A\ lnx - A21n(lnx -c) dx 
e C 

f m exp [ - A\ Inx - A2In(lnx-c)] dx 
e' 

=- fm In(lnx-c) exp [- AO - A\lnx -A2 1n(lnx-c)] dx 
e' 

(15.22) 
=-fm In(lnx-c)f(x)dx= -E[ln(lnx-c)] 

e' 

Also differentiating equation (15.19) with respect to AI and A2, respectively, one gets 

aAo A2 -1 
-=-c+--
aAI AI -l 

(15.23) 

aAo a 
-=In(A -l)+-lnr(1-A) 
aA \ aA 2 

2 2 

(15.24) 

Equation (15.24) can be simplified as 
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(1S.2S) 

where p = 1 - .1.. 2' Since the LP ill distribution has three parameters, equations (1S.23) and 
(1S.2S) are not sufficient and another equation is neded. This is obtained by recalling that 

(1S.26) 

Equating equations (IS.21) and (1S.23), as well as equations (1S.22) and (IS.2S), one obtains 

_P- =E[lnx]-c 
.1..[-1 

1\T(p) -In(AI -1)= E[ln(ln x--c)] 

(1S.27) 

(1S.28) 

IS.1.4 RELATION BETWEEN LAGRANGE MULTIPLIERS AND PARAMETERS 

Inserting equation (lS.19) into equation (1S.11), one gets 

-.1..2 In(ln x--c) -In x + In x] 

-(A -I) 
= exp [ - (AI - 1) (lnx - c) -lnx + In (AI - 1 ) 2 

+ In [r(1 - .1..2 ))-1 + In (lnx -c fA,] 

-A 
=eXp[-(AI -l)(lnx-c)..!.(AI - 1f(A,-I) (lnx-c) , ] 

x r(1-A2 ) 

Comparing equation (1S.29) with equation (1S.1), one gets 

Then 

1 
A, -1=-

I a 

(1S.29) 

(15.30) 

(1S.31) 
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Al = 1 +~ 

A2 = I-b 

15.1.5 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 
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(15.32) 

(15.33) 

The LP ill distribution has 3 parameters a, b, and c. The known constraints are related to the 
Lagrange multipliers by equations (15.26), (15.27) and (15.28) which, in tum, are related to the 
parameters by equations (15.30) and (15.31). Eliminating the Lagrange multipliers between these 
two sets of equations, we obtain parameters directly in terms of the constraints as 

ab + c = E[ln x] 

w(b) -In a = E[ln{ln(x--c)}] 

15.1.6 DISTRffiUTION ENTROPY 

Equation (15.7) gives the distribution entropy. Rewriting it, 

lex) = -i:f(x) Inf(x) dx 

(15.34) 

(15.35) 

(15.36) 

=[lnar(b)--+lna -] f(x)dx+(-) Inxf(x)dx C b I f~ a+l f~ 
a e C a e C 

-(b-l) f.: In(lnx-c)f(x) dx 

b C a+l-=lna reb) -- +( -) y -(b-l)E[ln(1nx -c)] 
a a 

b C a+l-=lna r(b)--+(-)y-(b-l)E[ln(y-c)] (15.37) 
a a 

Alternatively, since the transformation x = e Y is monotonic with the Jacobian J(y/x) = lIx, 
we can write 

lex) =1(y)-E[lniJ(l)i] =l(y) +y 
x 

=In(a br(b)) + l. -5:.. -(b-l)E[ln(y-c)] +y 
a a 

=In(a br(b))+a+l )y-5:..-(b-l)E[ln(y-c)] (15.38) 
a a 
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which is identical to equation (15.37). 

15.2 Parameter-Space Expansion Method 

15.2.1 SPECIFICATION OF CONSTRAINTS 

Following Singh and Rajagopal (1986), the constraints for this method are given by equation 
(15.8) and 

f ~ [lnx + lnx-c ]b-I f(x) dx = E [In( lnx - c )b-I ] 
e C a a 

(15.39) 

(15.40) 

15.2.2 DERIVATION OF ENTROPY FUNCTION 

The pdf corresponding to the principle of maximum entropy (POME )and consistent with 
equations (15.8), (15.39), and (15.40) takes form 

lnx-c lnx-c b-I 
f(x) = exp [- AO -AIlnx- Al (--) - A2ln (--) ] 

a a 
(15.44) 

where, AO' A) and A2 are Lagrange multipliers. Insertion of equation (15.44) into equation 
(15.8) yields the partition function: 

~ f~ ~ , lnx-c, lnx-c b-I exp (11.0 ) = exp [ -lI.l lnx-1I.1 (--) -11.2 In (--) ] dx 
e' a a 

= ae C()-A,) ( 1 )1-A2(b-1) r[1 - A2 (b -1))] 
A) (1 +a)-a 

(15.42) 

The zeroth Lagrange multiplier is given by equation (15.42) as 

(15.43) 

Also, one gets the zeroth Lagrange multiplier from equation (15.28) as 
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(15.44) 

Introduction of equation (15.43) in equation (15.41) yields 

e(I-A1) K I 
f( ) - e (a) [~I ~ lnx-c ~ I ( nx - c )b-I ] X - exp -I\. nx-I\. ---I\. n --

ar(K) I I a 2 a 
(15.45) 

A comparison of equation (15.45) with equation (15.1) shows Al = 1, and A2 =-1. 
Taking -logarithm of equation (15.45) leads to 

Inx-c 
-Inf(x) = -c (AI -1) + Ina + lnr (K) - Kina + Allnx + Al (--) 

a 
+ A In(lnx-ct- I 

2 a 

Therefore, the entropy function of the LP III distribution becomes 

+ A2E [In( Inx-c )b-I ] 
a 

15.2.3 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

(15.46) 

(15.47) 

Taking partial derivatives of equation (15.47) with respect to Al ,A2, a, and b separately, and 
equating each derivative to zero, one gets 

BI Inx-c - =0 = -c - K(1 +a)l\1(a) + E [lnx] + E (--) 
~I a 

(15.48) 

~ =0 = -(b-l)l\1(K) +(b-l)lna + E [In ( lnx -c )b-I] 
BA2 a 

(15.49) 
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~ =0 = -(b-l)lJr(K) + (b-1)lno: + E [In ( lnx -c )b-I] 
aA2 a 

aI =0=1. -K(AI -l)lJr (O:)I-~E( Inx-c) -A2 b-l 
aa a a a a 

Simplification of equations (15.48) to (15.51) gives 

E [In x] = c + a b1jr(1) 

E [In (In x-c)] = In a + 1jr(b) 

E [In x] = c + ab 

E [In (In x-c)] = In a + 1jr(b) 

(15.49) 

(15.50) 

(15.52) 

(15.53) 

(15.54) 

(15.55) 

Equations (15.53) and (15.55) are identical. The parameter estimation equations are 
equations (15.52) to (15.54). 

15.3 Other Methods of Parameter Estimation 

15.3.1 METHOD OF MOMENTS (DIRECT) 

The direct method of moments (MOMD) (Bobee, 1975) uses sample estimates of moments of 
untransformed (real) data. Using equation (15.6a) we can write 

In .u ~ = c - b In (1- a ) 

In .u ~ = 2 c - bIn (1- 2 a ) 

In .u ~ = 3 c - bIn (1- 3 a) 

Equations (15.56)-(15.58) can be rearranged to yield 

In .u ~ - 3In .u ; 
In .u ~ - 2 In .u ; 

3In ( 1- a ) -In ( 1- 3 a ) 
___ -'-----' __ c.... ( = B, say) 
2In ( 1- a ) -In (1- 2a ) 

(15.56) 

(15.57) 

(15.58) 

(15.59) 

For a sample under consideration, B = [In 113' - 3ln Ill'] / [In 112' - 2ln Ill'] can be estimated from the 
sample estimates of the first three moments about the origin. The right side of equation( 15 .59), which 
is a function of parameter a only (say, B (a)), reveals that a is less than 1/3. In the limit, B(a) 
approaches infinity, 3, and 2, as a approaches 1/3, 0, and minus infinity, respectively. It should be 
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possible to approximate the B( a) versus a relation by a series of polynomials, as for example discussed 
by Kite (1978). Then a good approximation of the sample estimate of a could directly be found from 
the sample estimate ofB and should be good enough for most fitting problems. However, for purposes 
of simulation, a large number of (a-B(a» points can be generated in the region a less than 1/3 (Bobee, 
1975). Subsequently, a sample estimate of a can be interpolated corresponding to the sample estimate 
of the B value from the generated a-B(a) points, and refined using a method such as the Newton­
Raphson method applied to equation (1S.59). With the interpolated value of a being a good starting 
solution, the iterative scheme quickly converges to the true solution to a desired degree of significant 
accuracy. Parameters b and c can then be estimated using equations (1S.S6) and (1S.S7). 

IS.3.2 METHOD OF MOMENTS (INDIRECT) 

The indirect method of moments (MOMI) is basically the method advocated by the U.S. Water 
Resource Council (1967). This method is applied to the log-transformed data. The method uses 
equations (1S.6b) - (IS.6d) and is described in Bulletin No. IS, 17 A and 17 as well as by Rao (1980b) 
among others. Two variations of MOM!, designated as MOMI 1 and MOMI 2, were tested by Arora 
and Singh (1989a, b), which essentially differ in the sample skewness estimator used for the log­
transformed data: 

(IS.60) 

, 8.5 
g =(1+-)g 

Y n Y 
(1S.61) 

where n is the sample size, and y and Sy are the sample mean and standard deviation, respectively, 

of log-transformed data. 

IS.3.3 METHOD OF MIXED MOMENTS 

Rao (1980b, 1983) proposed the method of mixed moments (MIX) for the LP III distribution, with 
the objective of obviating the use of the sample skewness coefficient in parameter estimation. After 
use of various combinations mixing the first two moments of the untransformed and log-transformed 
samples he found one particular combination to be preferable on the basis of sampling properties. This 
method conserves the sample mean and variance of the untransformed data and the sample mean of 
the log-transformed data. Thus, equations (IS.6b), (IS.6c), and (1S.5a) are solved to estimate 
parameters a, b, and c. An improved method, as compared with the method described by Rao (1983), 
was developed by Arora and Singh (1989b), and will not be repeated here. 

IS.3.4 METHOD OF MAXIMUM LIKELIHOOD ESTIMATION 

For the method of maximum likelihood estimation (MLE), the likelihood function of a sample of n 
observations drawn from a log-Pearson type III distribution can be expressed as 
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1 n In x. - e 1 n 
L=-n [af(b)rnfn I ](b-1) exp[--L (In(x;-e)] (15.62) n ;=1 a a ;=1 

;=1 

The log-transformed L becomes 

n n 1 n 
InL=-nlna-nlnf(b)- L x.+(b-I) Lln([lnx-c]la)-- L (Inx.-c) 

i=1 I i=l ai=l I 

(15.63) 

Differentiating equation (15.63) with each respect to a, b, and c, and equating each derivative to zero 
produces the following: 

aOn L) , 
----a;;-=-nab+ t,. (Inx,-c)=O 

d (In L) ~ (In x; - e) 
db =-nlf/(b)+tt [ e ]=0 

d (In L) 

de 

n n 

--(b-l)L 0 
a ;=1 (lnx;-e) 

Equations (15.64) and (15.66) can be rearranged to give 

SI 
a=-

nb 
S S n n 

b = ( 1 ~ 2) , SI = L (In x; - e) , S2 = L 
SI S2 n ;=1 ;=1 (lnx;-e) 

n n 
In L = - n In a - n In f (b) - LX. + (b -1) Lin ([ In x - c] I a} 

i=l I i=l 

I n 
- - L (In x. - c ) 

a i = 1 I 

(15.64) 

(15.65) 

(15.66) 

(15.67) 

(15.68) 

(15.69) 

For a specified value of c, parameters a and b can be explicitly found from equations (15.67) and 
(15.68), respectively. Substitution of these values of a, b, and c in equation (15.65) yields 

a (In L ) / a b = R (som e residual value) . The objective is to minimize R and this involves an 
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iterative procedure. An efficient algorithm was developed by Arora and Singh (1988). 

15.4 Comparative Evaluation of Estimation Methods 

15.4.1 MONTECARLOSIMULATION 

Arora and Singh (1987a,b, 1989a, b) compared various methods of parameter esimation using Monte 
Carlo experiments. Noting that annual flood data generally lie in the area of the p-y diagram 
delineated by 0.3 -<p -<0.8 and upward of 1 (Rossi et al., 1986; Wallis and Wood, 1985; Landwehr 
et al., 1978 ), they generated five cases of LP ill population, representative of the real flood data, for 
Monte Carlo experiments. These cases are listed in Table 15.1. It is noted that A\ -<ALN3 -<As -<A2 
-<A4 -<A3 , where the subscripts of A refer to the the LP ill populations and subscript LN3 refers to 

the three-parameter lognormal population. For each of the population cases, 1000 random samples 
of size 10, 20, 30, 50, and 75 were generated, and parameters and quantiles were estimated using 
different parameter estimation methods. The 1000 estimated values of parameters and quantiles for 
each sample size and population cases were used to approximate the values of the standardized bias 
(BIAS), standard error (SE), and root mean square error (RMSE). Due to the limited number of 
random samples used, the results are not expected to reproduce the true values of BIAS, SE, RMSE, 
and robustness (Kuczera, 1982a, 1982b), but they do provide a means of comparing the performances 
of various estimation methods. 

15.4.1.2 B1AS in Parameter Estimates: In general, unusually high BIAS was observed in estimates 
of parameters a, b, and c produced by all methods. MIX yielded considerably less bias than MOMD 
and was clearly superior to MOMD in terms of both mini-max BIAS and minimum average BIAS 
criteria. This was observed for most sample sizes and return periods. 

Table 15.1 LP ill population cases considered in sampling experiments (~ = 1) (after Arora and 
Singh, 1989a) 

LPTill Population Statistics Parameters 
Population 

Cases CV (p) Skew (y) yy a b c 

Case 1 0.5 1 -0.45 -0.11832 19.82269 2.216713 

Case 2 0.5 3 0.62 0.127683 10.30311 -1.407434 

Case 3 0.5 5 1.12 0.205678 3.215257 -0.740366 

Case 4 0.3 3 1.22 0.150978 2.681889 -0.438946 

Case 5 0.7 3 0.20 0.059798 98.38009 -6.066213 

15.4.1.2 RMSE in Parameter Estimates: There were wide differences in the RMSE performance of 
estimators, with the percent difference between the best and worst being as much as 425% for sample 
size of 10. Either MIX or MOMD provided the most favorable RMSE values. The MIX estimator was 
superior on the basis of the minimum-average RMSE criteria, and comparable to MOMD on the basis 
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of mini-max RMSE criteria. Although MIX was expected to be the most resistant estimator, MOMD 
performed comparably. MIX and MOMD performed markedly superior to other methods. MOMI 1 
performed poorly, as did MLE and POME. 

15.4.1.3 Bias in Quantiles: In general, unusually high BIAS, SE and RMSE were observed for 
parameter estimates of a, b, and c of all methods. However, the intercorrelation among parameter 
estimates was such that reasonable quantile estimates were obtained. MOMD and MIX mostly 
underestimated the quantiles (negative bias), especially for T greater than 25. MIX consistently 
produced smaller BIAS than MOMD, and the difference became more pronounced at higher return 
periods. MOMI 1 and MOMI 2 mostly overestimated the quantiles (positive bias). Such trends were 
not discernible for MLE and POME. MOMI 1 mostly produced smaller absolute bias estimates than 
did MIX. 

15.4.1.4 SE in Quantiles: In terms of standard error, MOMI 1 and MOMI 2 consistently produced 
higher standard error than other methods, especially MOMD and MIX. MOMI 2 fared worse than 
MOMI 1. MLE and POME seemed susceptible to smaller sample sizes, and in general produced 
higher standard error than other methods for such sample sizes. MIX and MOMD depicted remarkable 
stability even for smaller sample sizes when some of the other methods showed a deterioration in 
standard error. In general, MIX and MOMD outperformed other estimators in terms of SE for all 
population cases. 

15.4.1.5 RMSE in Quantiles: As compared with other estimators, MOMI 1 and MOMI 2 performed 
poorly in terms of RMSE. While MLE and POME did perform well for some population cases and 
sample sizes, they depicted large deterioration in RMSE statistics for smaller sample sizes. MIX and 
MOMD consistently produced least or comparable RMSE estimates. MIX seemed to hold an edge 
over MOMD. Both of these estimators were remarkably stable for smaller sample sizes. 

15.4.2 APPLICATION TO FIELD DATA 

Singh and Singh (1988) compared POME, MOM, and MLE using annual maximum discharge data 
for six selected rivers. These data were selected on the basis of length, completeness, homogeneity, 
and independence of record. Each gaging station had a record length of more than 30 years. The 
methods were compared using relative mean error (RME) and relative absolute error (RAE).The 
parameter estimates obtained by POME and MLE were closer to each other than those for MOM. For 
two gaging stations observed and computed frequency curves are shown in Figures 15.1 and 15.2. The 
observed frequency curve was computed using the Gringorton plotting position formula. POME does 
not rquire the use of skewness whereas MOM does. In this way, bias is reduced when POME is used 
to estimate the LPT III parameters. For five of the six selected data sets, both RME and RAE yielded 
by POME were less than or equal to those of MLE. For only one data set, values of these measures 
were lower for MOM than those for POME, but the differences were marginal. For all six data sets, 
POME and MLE were found comparable. 
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CHAPTER 16 

BETA DISTRIBUTION 

In reliability safety analysis of civil engineering systems, we encounter parameters which are 
generally bounded and skewed random quantities. Exemplifying these parameters are factors of 
safety or safety indexes, variables representing strength of materials, intensity of loads, etc. Harr 
C 1977) demonstrated the ability of the beta Cor Pearson type 1) distribution to approximate most 
of the geotechnical parameters. Obini and Bourdeau C 1985) simplified use of the beta distribution 
and investigated its sensitivity to the bound locations. Fielitz and Myers (1975) argued for the 
method of moments CMOM) to estimate the parameters of the beta distribution for ease of 
computation. Romesburg (1976) commented that formulation of the problem in terms of smallest 
order statistics would allow the use of the method of maximum likelihood estimation CMLE) to 
estimate the parameters of the beta distribution with little more effort than MOM. In multivariate 
cases, however, MOM would be the only practical method for parameter estimation. 

If X has a beta distribution then its probability density function Cpdf) is given by 

fix) = rCa+b) x a - 1 (1-X)b-l 

rCa)rCb) 
(16.1) 

where a > 0, b > 0 and 0 < x < 1. The beta distribution is a two-parameter distribution. Its 
cumulative distribution function Ccdf) can be written as 

16.1 Ordinary Entropy Method 

16.1.1 SPECIFICATION OF CONSTRAINTS 

Taking logarithm of equation (16.1) to the base 'e', we get 

lnf(x) = InrCa+b) -lnrCa) -lnrCb) + Ca-l)lnx + Cb -1 )In(l - x) 

(16.2) 

(16.3) 

Multiplying equation (16.3) by [-fCx)] and integrating betwee 0 and 1, we get the entropy 
function: 

V. P. Singh, Entropy-Based Parameter Estimation in Hydrology
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Iif) - fo1f(x)lnf(x)dx = [-lnr(a+b) + Inr(a) + Inr(b)] fo1f(x)dx 

- (a-I) fo1lnxf(x)dx-(b-l) fo1ln(l-x)f(x)dx 
(16.4) 

From equation (16.4) the constraints appropriate for equation (16.1) can be written as 

(16.5) 

fo1lnxf(X) =E[ln] (16.6) 

fo1ln(1-X)f(x)dx = E[ln(1-x)] (16.7) 

Equation (16.5) can be verified as follows. Substituting equation (16.1) in equation (16.5) one 
gets 

Because 

r(a+b) rlxa-I(1_x)b-ldx 
r(a)r(b) 10 

where ~(a,b) is a beta function. Therefore, we obtain 

r(a+b) r(a)r(b) = 1 
r(a)r(b) r(a+b) 

16.1.2 CONSTRUCTION OF ZEROTH LAGRANGE MULTIPLIER 

(16.8) 

(16.9) 

The least-biased pdf f(x) consistent with equations (16.5) to (16.7) and corresponding to the 
principle of maximum entropy (POME) takes the form: 

(16.10) 

where 1..0,)"1' and 1..2 are Lagrange multipliers. Substituting equation (16.10) in equation (16.5) 
yields 

(16.11) 



Equation (16.11) gives the partition function as 

expO .. o) = 101 exp[ -AIlnx - A2In(l-x)]dx 

Equation (16.12) can be simplified as follows: 

The zeroth Lagrange multipliers Ao is got from equation (16. 13 a) as 

The zeroth Lagrange multiplier is also obtained from equation (16.12) as 

AO =In fol exp [-AIlnx-A2In(l-x)]dx 

(16.12) 

(16.13a) 

(16.13) 

(16.14) 

16.1.3 RELATION BETWEEN LAGRANGE MULTIPLIERS AND CONSTRAINTS 

Differentiating equation (16.14) with respect to Al and A2 respectively, one gets 

aAo follnxexp[ -AIlnx-A2In(1-x)]dx 

aAI fol exp[ -A\lnx-A2In(l-x)]dx 

= - fol1nx.f(x)dx = - E[lnx] (16.15) 

aAo fol1n(1-x)exp[ -A\lnx-A2In(l-x)dx 

aAI 101 exp[ -AI lnx-A2In(1-x)]dx 

= - folln(1-x)exp[ -Ao - A\lnx-A2In(l-x)]lnxdx 
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~ - folln(1-x)f(x)dx ~ -E[ln(l-x)] 

Differentiating equation (16.13b) with respect to Alone also obtains 

aAo a a 
-~-lnr(1-A )--lnr(2-A -A) aA aA I aA I 2 

I I I 

Let 

aa aA 
a~I-A '-~-1' A~I-A ,_1' ~-1' a+A~2-A-A 

I' aA I ' I' 2' aA2 ' I' I 2 

Substituting the above quantities in equation (16.17), one gets 

aAo a aa a aa 
- ~-lnr(a)- --lnr(a +P)-
aAI aa aA I aa aAI 

~1\1(a)(-I)-I\1(a+p)(-I) ~ -1\1(a) +1\1(a +P) 

Differentiating equation (16.13b) with respect to A2 , one obtains 

a ap a ap 
~-lnr(p)- --lnr(a+p)- ~ -1\1(P) -1\1(a + P) 

ap ap ap aA2 

(16.16) 

(16.17) 

(16.18) 

(16.19) 

Equating equations (16.15) and (16.18), as well as equations (16.16) and (16.19), we obtain 

- E[ln x] = - l\1(a) + l\1(a + P) (16.20) 

-E[ln(1-x)] ~ -1\1(P) +1\1(a + P) (16.21) 

or 

E[lnx] ~ l\1(a) -1\1(a + P) (16.22) 

E[ln(1-x)] ~1\1(P) -1\1(a + P) (16.23) 

The left hand sides of equations (15.22) and (15.23) are known. Therefore, the values of a and 
p can be found, which are, in tum, related with Al and A2 • 

16.1.4 RELATION BETWEEN LAGRANGE MULTIPLIERS AND PARAMETERS 

Substituting equation (16.13b) in f(x) given by equation (16.10), one gets 



f(x) = exp[lnr(l-AtW']exp[ln[r(l-A2W'exp[lnr(2-At-A2)] 

x exp[lnx -l.l]exp[ln(l-x) -~] 

r(2-At -A2) x-l.l(l-xf~ = r(cc+P) x .. -t(l-x)~-t 
r(1-At)r(l-A2) r(cc)r(p) 

(16.24) 

A comparison of equation (16.24) with equation (16.1) shows that a = cc and b = p. 

16.1.5 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

279 

Equations (16.22) and (16.23) relate the Lagrange multipliers to constraints and equation (16.24) 
shows the relation between the Lagrange multipliers and parameters. Eliminating the Lagrange 
multipliers between these equations, we get distribution parameters a and b in terms of the 
constraints E[ln x] and E[ln(l-x)] through equations (16.22) and (16.23). These equations are 
nonlinear but can be easily solved iteratively. 

16.1.6 DISTRIBUTION ENTROPY 

Equation (16.4) defines the distribution entropy. 

lex) = - Jotf(x)lnf(x)dx 

Substituting equation (16.1) in equation (16.25) and simplifying, one gets 

l(x) = [-lnr(a+b) + lnr(a) + lnr(b)] Jotf(x)dx 

l(x) = In [r(cc)r(p) ](a-l)E[ lnx] - (b-l)E[ In(l-x)] 
r(cc)+P 

16.2 Parameter-Space Expansion Method 

16.2.1 SPECIFICATION OF CONSTRAINTS 

(16.25) 

(16.26) 

Following Singh and Rajagopal (1986), the constraints for this method are equation (16.5) and 

(16.27) 

(16.28) 
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16.2.2 DERIVATION OF ENTROPY FUNCTION 

The pdf corresponding to the principle of maximum entropy (POME) and consistent with 
equations (16.5), (16.27), and (16.28) takes the form 

(16.29) 

where AO' AI ' and A2 are Lagrange multipliers. Insertion of equation (16.29) into equation 
(16.6) yields the entropy function: 

exp(Ao) = 101 exp[ -AIlnx a - 1 -A2In(1-x)b-I] 

r(1-AI(a-l»r(1-Aib- 1» 

r(2-AI(a-l)-A2(b-l» 

The zeroth Lagrange multiplier is given by equation (16.30) as 

Substitution of equation (16.31) in equation (16.29) gives 

(16.30) 

(16.31) 

r(2-A (a-I)-A (b-I» 
fix) = I 2 ex [-A lnx a - I -A In(1-x)b-I] (16.32) 

r(1-AI(a-l))r(1-A2(b-l)) p I 2 

A comparison of equation (16.32) with equation (16.1) shows that AI =A2 = -1 . Taking 
logarithm of equation (16.32) one obtains 

(16.33) 

The entropy function of the beta distribution becomes 

(16.34) 

16.2.3 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

Taking partial derivatives of equation (16.34) with respect to AI ,A2 ,a, and b separately and 
equating each derivative to zero, one obtains 



Simplification of equation (16.35) to (16.38), respectively, yields 

E[ln(1-x)] = \jJ(K,) - \jJ(K,) 

E[ln(1-x)] = \jJ(K,) - \jJ(K2) 

(16.39) 

(16.40) 

(16.41) 

(16.42) 
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Equations (16.39) and (16.41) are the same and so are equations (16.40) and (16.42). Therefore, 
equations (16.39) and (16.40) are the parameter estimation equations. 

16.3 Other Methods of Parameter Estimation 

Two other methods of parameter estimation are briefly outlined: Method of moments (MOM) 
and the method of maximum likelihood estimation (MLE). 

16.3.1 METHOD OF MOMENTS 

The beta distribution has two parameters. Therefore, two moments of X will suffice for the 
method of moments (MOM). The r-th moment of the distribution about the origin can be 
expressed as 

f (a +b) rl 
M r (x ) = f ( a ) f (b ) Jo 

b -I f ( a + b ) f (a + r ) 
(I-x) dX=f(a)f(a+b+r) (16.43) 

Equation (16.43) yields the first two moments as 

a 
M =--

1 a +b 
(16.44) 
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a(a+l) 
M =--....:....--...:....--

2 (a+b)(a+b+l) 
(16.45) 

Equations (16.44) and (16.45) can be solved by recalling that the first moment is the mean and 
the second moment is equal to the sum of the variance and the square of the first moment. 

16.3.2 METHOD OF MAXIMUM UKELIHOOD ESTIMATION 

For the method of maximum likelihood estimation (MLE), the likelihood function, L, for a 
sample of size n drawn from a beta population is given as 

(16.46) 

The log likelihood function, In L, is expressed from equation (16.46) as 

n 

In L = n In f (a + b ) - n In f (a ) - n f ( b ) + L In [ X; -I (1- x; ) b-I ] (16.46) 
;=1 

Differentiating equation (16.46) with respect to parameters a and b, respectively, and equaing 
each derivative to zero yields the parameter estimation equations: 

a[Inf(a)] 

aa 

a[lnf(b)] 

ab 

a [In f ( a + b )] =..!.. t In Xi 

aa n ;=1 

(16.47) 

a [ In f (a + b ) I a b = -; In (1- Xi) (16.48) 

Equations (16.47) and (16.48) are solved iteratively. It should be noted that these equations are 
equivalent to equations (16.40) and (16.42) of the POME method. This means that POME and 
MLE would yield equivalent parameter estimates. 
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CHAPTER 17 

TWO-PARAMETER LOG-LOGISTIC DISTRIBUTION 

The log-logistic distribution (LLD) is obtained by applying the logarithmic transformation to the 
logistic distribution (LD) in much the same way as the log-normal distribution is obtained from 
normal distribution or the log-Pearson distribution from the Pearson distribution. The log­
logistic distribution is a special case of Burr's type-XII distribution (Burr, 1942), and also a 
special case ofthe "Kappa distributions" (Mielke and Johnson, 1973), that have been applied to 
precipitation and streamflow data. 

When compared with the log-normal distribution, the LLD has a similar shape, but is 
mathematically more tractable. That is why Bennett (1983) chose it to analyze survival data. It 
can also be a good replacement for the Weibull distribution whose hazard function must be 
monotonic and, hence, may not be adequate in many practical cases. Furthermore, LLD is related 
to extremal distributions. As demonstrated by Lawless (1986), the Wei bull distribution plays a 
central role in the field of reliability analysis because it is a unique distribution that belongs to 
two families of extreme distributions. Each of these two families possesses desirable attributes 
for analysis of proportional hazard and accelerated failure times. When these two families are 
generalized, the LLD has the attractive feature of being a member of both families. Because it~ 
distribution function has a closed form and its hazard function is quite flexible, this distribution 
has greater appeal and may be applicable to a wide variety of problems in many areas. 

Shoukri, et al. (1988) applied the 2-parameter log-logistic distribution (LLD2) to analyze 
extensive Canadian precipitation data, and found it to be a suitable model for generating 
precipitation for the various Canadian regions. In their investigation of the methods of 
probability-weighted moments (PWM) and maximum likelihood estimation (MLE) for LLD2, 
Shoukri, et al. (1988) found PWM to produce smaller biases and variances in parameter estimates 
than MLE, even when sample sizes were as small as 15 or 25 observations. However, that was 
not true for efficiency of parameter estimates. Guo and Singh (1992) employed the principle of 
maximum entropy (POME) to derive a new method of parameter estimation for the LLD2. 
Monte Carlo simulated data were used to evaluate this method and compare it with the methods 
of moments (MOM), probability weighted moments (PWM), and maximum likelihood 
estimation (MLE). Simulation results showed that POME's performance was comparable to 
other methods. 

The log-logistic distribution (LLD) is obtained by the logarithmic transformation of the 
logistic distribution. Thus, if Y is a random variable which has a standard logistic distribution 
with probability density function (pdf) g(y) = exp(y)(1 +exp(y»·2, then using the transformation 
y = b In(x/a), the pdf of X can be expressed as 
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(bla)(xla)b-l 
f(x)= [1+(xla)b]2 ,a,x>-O;b~l (17.1) 

A random variable X whose pdf is given by equation (17.1) is said to have a 2-parameter 10g­
logistic distribution (LLD2). Its cumulative distribution function (cdf) and inverse cumulative 
distribution function are given, respectively, by 

(17.2) 

x=a [F 1(l-F)]lIb (17.3) 

The shapes of the LLD2 for various values of a and b are illustrated in Figures 17.1 and 17.2. 

17.1 Ordinary Entropy Method 

17 .1.1 SPECIFICATION OF CONSTRAINTS 

Taking logarithms of equation (17.1) to the base 'e' , one gets 

or 

InJtx) =In(b/a) +(b -1)ln(x/a) -2In[l +( ~)b] 
a 

InJtx) =Inb -Ina + (b -1)Inx - (b -1)lna -2In[ 1 + (x/a)b] (17.4) 

Multiplying equation (17.4) by [-f(x)] and integrating between 0 and 00, one obtains the entropy 
function: 

f~ b f~ /(f) = - Jtx)lnJtx)dx = [-In( -)] Jtx)dx 
o a 0 

b 
- (b -1) r~lnxJtx)dx +2 r~Jtx)ln [l + (~) ]dx 

10 10 a 

(17.5) 

From equation (17.5), the constraints, appropriate for equation (17.1), can be written as 

fo~ Jtx)dx = 1 (17.6) 

fo~lnJtx)dx =E[lnx] (17.7) 

J.- X X 
in [ i + ( - ) b ] f ( x) dx = E [ in { 1 + ( - ) b ] 

o a a 
(17.8) 
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Figure 17.1 LLD2 density function with a = 0.8, b = 2, 5, 10; line: b = 10; dash: b = 5; and 
plus: b =2. 

in which E[·] denotes the expectation of the bracketed quantity. These constraints specify the 
infonnation sufficient for LLD2. Because this information is determined from data in terms of 
expectations, the parameters and other statistics of the distribution can be physically interpreted. 

17.1.2 CONSTRUCTION OF ZEROTH LAGRANGE MULTIPLIER 

The least -biased pdf corresponding to POME and consistent with equations (17.6) to (18.8) takes 
the following form: 
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x X b 
f(x)=exp{-a o-a 1 ln(-)-a 2 In[1+(-)]} (17.9) 

a a 

where <lo , at , and ~ are Lagrange multipliers. The mathematical rationale for equation (17.9) has 
been presented by Tribus (1969). 
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Figure 17.2 LLD2 density function with a = 0.5, 1, and 2; and b = 3; line: a = 2; dash: a = 1; 
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Insertion of equation (17.9) into equation (17.6) yields 

ex p (a 0 ) = r ex p ( - a, In ( .:.) - a 2 In [ 1 + ( .:.) b ]) dx 
o a a 
. I-a I-a 

br(-b-')f(a 2 --b-' ) (17.10) 
= 

f (a 2 ) 

which is called the partition function. rCe) is the gamma function. The zeroth Lagrange 
multiplier is given by equation (17.10) as 

I-a I-a 
aD = In b + In r ( T) + In r (a 2 - -b -' ) -In r (a 2 ) (17.11) 

One also gets the zeroth Lagrange multipler from equation (17.10) as 

1~ x x 
aD =In exp (- a, In (-)-a 2 In[1 +(_)b ])dx 

o a a 
(17.12) 

17.1.3 RELATION BETWEEN LAGRANGE MULTIPLIERS AND CONSTRAINTS 

Differentiating equation (17.12) with respect to a, and az, respectively, one gets 

f~ X Xb x 
aao = 0 exp{-a,In(~)-a2In[I+(-;) ]H-In(-;)}dx 

f~ x x 
exp {-a, In (-) - a2 In [1 + ( _)b ]}dx 

c a a 
x 

= - E [In (- )] (17.13) 
a 

f~ x x 
exp {-a, In (-) -a 2 1n [1+( _)b ]}dx 

c a a 
x 

= - E { In [ 1 + (- ) b ]} (17.14) 
a 
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Similarly, differentiation of equation (17.11) with respect to a[ and Rz, respectively, yields 

(17.15) 

aao -a = 'P (k2 ) - 'P (a 2 ) (17.16) 
a2 

where k[ = (l-a[ )Ib and k2 = [Rz - (1- a[)Ib]. Equating equation (17.13) to equation (17.15) and 
equation (17.14) to equation (17.16), we obtain 

x 
E [In { 1 + ( - ) b } ] = 'P (a 2 ) - 'P (k 2 ) 

a 

(17.17) 

(17.18) 

17.1.4 RELATION BETWEEN PARAMETERS AND LAGRANGE MULTUPLIERS 

Insertion of equation (17.11) into equation (17.10) yields 

b r (a ) x x 
f (x)-- 2 (_)-6, [l+(-)b ]-6, (1719) 

- a r[(1-a])lb]r[a 2 -(1-a]) Ib] a a . 

A comparison of equation (17.14) with equation (17.2) yields Rz = 2 and a[ = I-b. 

17.1.5 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

The LLD2 distribution has three parameters which are related to the Lagrange multipliers by 
bequations (17.17 ) and (17.18) which, in turn, are related to the constraints through equation 
(17.19). Eliminating the Lagrange multipliers between these two sets of equations yields the 
relation between parameters and constraints. Hence, we get 

x 
E [In (-)] = 0 

a 

x 
E [ In { 1 + ( - ) b } ] = 1 

a 

(17.20 ) 

(17.21 ) 

Equations (17.20) and (17.21) are the estimation equations to get a unique determination of 
parameters a, and b. 

17.1.6 DISTRIBUTION ENTROPY 

The entropy of the LD2 distribution is given as 
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x x 
I ( f ) = In b -In a + (b -1) E [ ( -) b ] - 2 E { In [1 + ( -) b ]} (17.22) 

a a 

17.2 Parameter-Space Expansion Method 

17.2.1 SPECIFICATION OF CONSTRAINTS 

Following Singh and Rajagopal (1986), the constraints for this method are given by equations 
(17.6 )-(17.8 ). 

17.2.2 DERN ATION OF ENTROPY FUNCTION 

Taking logarithm of equation (17.19) gives 

b I-a] I-a] 
In! (x)=In(;)+Inf(a 2 )-Inf(-b-)-Inf(a 2 --b-) 

(17.23) 
x x 

- a] In ( - ) - a 2 In [ I + ( - ) b ] 
a a 

Thus, the entropy function I(f) ofLLD2 can be expressed using equation (17.15) as 

I-a I-a 
I ( ! ) = In a -In b + In f ( -b _1 ) + In f ( a 2 - -b _1 ) -In f ( a 2 ) 

(17.24) 
x x 

+ alE [ In ( - ) ] + a 2 E [ In (1 + ( - ) b ) ] 
a a 

17.2.3 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

According to Singh and Rajagopal (1986), the relation between distribution parameters and 
constraints is obtained by taking partial derivatives of the entropy function with respect to 
Lagrange multipliers as well as distribution parameters and then equating these derivatives 
individually to zero. To that end, taking partial derivative of equation (17.24) with respect to ai' 
liz, a, and b separately, and equating each derivative to zero yields 

a I I x 
-= -b [ - 'II ( k 1 ) + 'II ( k2 ) ] + E [In ( -) ] = 0 
a] a 

(17.25) 

al x -a = 'II (k 2 ) - 'II ( a 2 ) + E [ In (1 + ( - ) b ] 
a2 a 

(17.26) 

aI I a] b (x/a)b 
-=-- ----a E [ ]=0 
aa a a a 2 1+(x/a)b 

(17.27) 
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JI I I-a I-a 
a;;=--;;- '¥ (k 1 )(7) + '¥ (k 2 ) (T) =0 (17.28) 

where kJ = (l-aJ)Ib, k2=az-(1-aJ)1b and '" is digamma function = d[ln r(x)]/dx. Simplification 
of equations (17.25) to (17.28), respectively, yields 

x 
E [ In { 1 + ( - ) b } ] = 'I' (a 2 ) - 'I' (k 2 ) 

a 

(17.29) 

(17.30) 

(17.31) 

( x / a ) b In (x / a ) 1 1 - a 1 I - a 2 

a 2 E[ 1+ (x /a)b ]=b+[;"2\{1(k 1 )-~\{1(k2) 

Note that az=2 and aJ=I-b. Therefore, equations (17.29) to (17.32) become 

x 
E [In(-) ]=0 

a 

x 
E [ In { 1 + ( - ) b } ] = 1 

a 

(x /a)b 
2E[ ]-1 

1+(x/a)b -

( x / a ) b In { ( x / a )} 
2bE[ ]=1 

1+(x/a)b 

(17.32) 

(17.33) 

(17.34) 

(17.35) 

(17.36) 

Equations (17.35) and (17.36) are identities which can be proved as follows. For 
equation (17.35) we write 
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(x/a)b r~ (x/a)b (b/a)(x/a)b-I 

E [ 1 + (x / a ) b ] = Jo 1 + (x / a ) b [1 + (x / a )} b ] 2 dx 

(1 + Y b ) 3 dy , y = (x / a) 

2b -I 
Y 

(17.37) 

= B ( 2,1) = 1 / 2 , B (.,. ) = beta function 

Therefore, 

( x/a)b 
2E[ ]=1 

1+(x/a)b 
(17.38) 

Similarly, we write for equation (17.36): 

( x / a ) b In { (x / a ) } x In { (x ) / a } 
E [ 1 + (x / a ) b ] = E [ In ( -;; ) ] - E [ 1 + (x / a ) b ] 

= _ r~ In { (x / a )} b (x / a ) b -I dx 

Jo 1 + (x / a ) b a [ 1 + (x / a ) b ] 2 

r~ b In (y ) Y b-I 
= - J, b 3 dy, y = ( x / a ) 

o (l+y) 

=O.5( In(y)d(1+/)-2 

1 r~ 2 b = 2b J1 In ( z - 1 ) d z - , z = 1 + y 

1 . 1 1~ 1 1 1 =--hm In(z-l)-- (----+-)dz 
2b z--+O 2b 1 z Z2 z-1 
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2b 
(17.39) = 

Thus, 

(x / a ) b In { (x / a ) } 
2bE[ 1+(x /a)b ]=1 (17.40) 

Therefore, the POME-based parameter estimation equations are equations (17.33) and (17.34). 

17.3 Other Methods of Parameter Estimation 

17.3.1 METHOD OF MOMENTS 

For LLD2, the moment estimation equations are (Guo and Singh, 1992): 

E[x] = a B(1 + lib, 1 - lib) , (b ~ 1) 

r(m)r(n) 
B(m,n)= r(m+n) 

E[x2] = a2 B(1 + 21b, 1 - 21b) 

Therefore, the variance is obtained by 

(17.41) 

(17.42) 

Var[x] = a2 [B(l + 2Ib, 1 - 21b) - B2(1 + lib, 1 - lib)] , (b ~ 2) (17.43) 

17.3.2 METHOD OF MAXIMUM UKELll:IOOD ESTIMATION 

For the method of maximum likelihood estimation (MLE), the MLE estimation equations are 

(17.44) 

~ In ( Xi / a )( Xi / a ) b ~ 
2b £.J [ b ]-b £.J In(xi /a)-n=O (17.45) 

i=l· 1 + (Xi / a ) i=l 
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17.3.3 METHOD OF PROBABILITY WEIGHTED MOMENTS 

For the method of probability weighted moments (PWM), the estimation equations are given as 

b (17.46) 

Wo 
a =--------~~-------

r(l+lIb)r(1-lIb) 
(17.47) 

where 

1 n n-l n+l 
Wk = -; tt Xi ( k ) / ( k ) (17.48) 

17. 4 Comparative Evaluation of Parameter Estimation Methods 

Guo and Singh (1992) and Singh et al. (1993) evaluated parameters and quantiles of the 2-
parameter log-logistic distribution (LLG2) using the methods of moments (MOM), probability­
weighted moments (PWM), maximum likelihood estimation MLE), and entropy (POME) for 
Monte Carlo generated samples. The performance of these estimators was statistically compared, 
with the objective of identifying the most robust estimator from amongst them. Their work is 
summarized here. 

17.4.1 MONTE CARLO SIMULATION 

To assess the performance of the parameter estimation methods outlined above, Monte Carlo 
sampling experiments were conducted. Four cases for LLD2, listed in Table 17.1, were con­
sidered. For each population case, 1000 random samples of size 10, 20, 50, 100, 200 and 500 
were generated, and then parameters and quantiles were estimated. Figure 17.3 shows the unique 
relationship between coefficient of variation (CV) and parameter a. 

Table 17.1 LLD2 population cases considered in sampling experiments (population mean, 11=1). 

LLD2 Population Coefficient of a b 
Variation (CV) 

Case I 0.1 0.995 18.248 
Case 2 0.5 0.907 4.137 
Case 3 1.0 0.788 2.695 
Case 4 3.0 0.663 2.088 
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17.4.2 PERFORMANCE INDICES 

The perfonnance of the estimation methods was evaluated using standardized bias (BIAS), root 
mean square error (RMSE), and robustness criteria. These indices are described in Chapter 2. 

17.4.3 BIAS IN PARAMETER ESTIMATES 

The results of parameter estimation for the LLD2 distribution showed that in general, when CV 
was small (CV<O.I), MOM, POME and MLE perfonned the best and were comparable in 
estimating both a and b. When CV>O.I, MLE perfonned in a superior manner in estimating both 
a and b, and POME was comparable. When CV>2.0, PWM produced the least BIAS in 
estimating b for all sample sizes. 

17.4.4 RMSE IN PARAMETER ESTIMATES 

In general, MLE perfonned the best in estimating a and b in tenns of parameter RMSE for all 
sample sizes over all population cases, and POME was comparable. When CV>O.1 MOM was 
comparable, whereas when CV> 1.0 PWM perfonned well and was comparable. 
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Figure 17.3 Parameter a versus CV for LLD2 distribution. 
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17.4.5 BIAS AND RMSE IN QUANTILE ESTIMATES 

The results of quantile estimation of LLD2 showed that in general, POME and MLE performed 
in a superior manner in terms of quantile BIAS and RMSE for all sample sizes over all 
population cases. Again, for small CV, MOM was comparable and for large CV PWM was 
comparable. 

17.4.6 ROBUSTNESS EVALUATION 

The relative robustness of the parameter and quantile estimation methods clearly illustrated the 
generally superior performance of POME and MLE, and for small CV PWM performed worse, 
but for large CV, PWM performed better and MOM worse. 

References 

Bennett, S., 1983. Log-logistic regression models for survival data. Applied Statistics, Vol. 32, 
pp.165-17l. 

Burr, I. W., 1942. Cumulative frequency functions. Annals of Mathematical Statististics, Vol. 
13, pp. 215-232. 

Guo, H. and Singh, V. P., 1993. A comparative evaluation of estimators of log-logistic 
distributions by Monte Carlo simulation. Technical Report WRR26, Water Resources 
Program, Department of Civil Engineering, Louisiana State University, Baton Rouge, 
Louisiana, U.S.A. 

Lawless, J. F., 1986. A note on lifetime regression models. Biometrika, Vol. 73, No.2, pp. 509-
512. 

Mielke, P. W. and Johnson, E. S., 1973. Three-parameter kappa distribution maximum 
likelihood estimates and likelihood ratio tests. Monthly Weather Review, Vol. 101, pp. 
701-709. 

Shoukri, M. M., Mian, I. U. H. and Tracy, D. S., 1988. Sampling properties of estimators ofthe 
log-logistic distribution with application to Canadian precipitation data. The Canadian 
Journal of Statistics, Vol. 16, No.3, pp. 223-236. 

Singh, V. P. and Rajagopal, A. K., 1986. A new method of parameter estimation for hydrologic 
frequency analysis. Hydrological Science and Technology, Vol. 2, No.3, pp. 33-40. 

Tribus, M., 1969. Rational Descriptors, Decisions and Designs. Pergamon Press, New York. 



CHAPTER 18 

THREE-PARAMETER LOG-LOGISTIC DISTRffiUTION 

Some general aspects of the log-logistic distribution (LLD) are discussed in Chapter 17. The 
three-parameter log-logistic distribution (LLD3) is a generalization of the two-parameter log­
logistic distribution. The LLD3 has been applied to frequency analysis of precipitation and 
streamflow data. Ahmad, et al. (1988) employed it for flood frequency analysis of annual 
maximum series for part of Scotland, and compared its performance with the generalized extreme 
value, three-parameter log-normal and Pearson-type 3 distributions. They found LLD3 to 
consistently perform better than these three distributions. In a comparative study on statistical 
modeling of annual maximum flows of 112 Turkish rivers, Haktanir (1991) observed that LLD3 
and log-Pearson type 3 distribution provided better fits than log-normal, Gumbel, SMEMAX, 
log-Boughton, and Pearson-type 3 distributions. He concurred with the findings of Ahmad, et 
al. (1988) as far as Turkish rivers were concerned. 

Ahmad, et al. (1988) discussed several methods for estimating parameters of LLD3, 
including the methods of moments (MOM), maximum likelihood estimation (MLE), probability 
weighted moments (PWM), ordinary least squares (OLS), and generalized least squares (GLS). 
They found that for Scottish catchments OLS, GLS and MLE were in fairly close agreement. In 
their investigation of PWM and MLE for LLD2, Shoukri, et al. (1988) found PWM to produce 
smaller biases and variances in parameter estimates than MLE, even when sample sizes were as 
small as 15 or 25 observations. However, that was not true for efficiency of parameter estimates. 
In his comparative study on Turkish rivers, Haktanir (1991) used MOM, MLE and PWM for 
estimation ofLLD3 parameters, and found that no one method was uniformly superior, although 
PWM was better for more rivers than MOM and MLE. 

Guo and Singh (1992) and Singh et al. (1993) employed the principle of maximum 
entropy (POME) to derive a new method of parameter estimation for LLD3. Monte Carlo 
simulated data were used to evaluate this method and compare it with MOM, PWM, and MLE. 
Simulation results showed that POME's performance was superior in predicting quantiles oflarge 
recurrence intervals when population skew was greater than or equal to 2.0. In all other cases, 
POME's performance was comparable to other methods. 

Let there be two random variables X and Y related through a logarithmic transformation 
as Y = b In[(X-c)/a], where X is a positive random variable, and a, b and c are the three 
parameters. If Y has a logistic distribution (LD), 

g(y) = exp(y) [1 + exp(y)J2 (18.1) 

then X has a 3-parameter log-logistic distribution (LLD3) with probability density function (pdf, 
f(x)), cumulative distribution function (cdf, F(x)), and inverse cumulative distribution function 
(icdf, x(F)) expressed, respectively, as 
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f(x) = 
(b/a) [(x-c)/atl 

{ 1+[(x-c)/a]b}2 

[(x-c)/at 
F(x) = ---­

I + [(x-y)/a]b 

x = y + a [F/(1-F)]lib 

a > 0, x > c; b ~ 1 (18.2) 

(18.3) 

(18.4) 

Parameters a, b and c, respectively, are the shape, scale and location parameters; and x and y are 
values of X and Y, respectively. LLD3 can also be obtained by compounding the 3-parameter 
Weibull distribution (Shoukri, et al., 1988): 

I b x-c x-c 
f(-x z) =z(-)(--)b-lexp(-z ( __ )b 

a a a 
(18. 5 ) 

over the probability distribution of Z, that is taken as standard exponential. That is, 

f (x)= r f (xlz)exp(-z)dz (18.6) 

The shape ofLLD3 for various values of a and b and c = 0 are shown in Figures 18.1 and 18.2. 

18.1 Ordinary Entropy Method 

18.1.1 SPECIFICATION OF CONSTRAINTS 

Following Jaynes (1968) and Tribus (1969), the constraints appropriate for equation (18.2) can 
be written as 

[f (x )dx=l (18.7) 

[ x-c x-c 
In (-) f (x) dx = E [In (--)] 

c a a 
(18.8) 

[ x-c x-c 
In[l+(-)b f(x)dx=E[l+(-)b] 

c a a 
(18.9) 

in which E[.] denotes the expectation of the bracketed quantity. These constraints specify the 
information sufficient for LLD3. Because this information is determined from data in terms of 
expectations, the parameters and other statistics ofthe distribution can be physically interpreted. 
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Figure 18.1 LLD3 density function with a = 0.8, and b = 2, 5, and 10. 

18.1.2 CONSTRUCTION OF ZEROTH LAGRANGE MULTIPLIER 

The least-biased pdf corresponding to POME and consistent with equations ( 18.7) to (18.9) takes 
the following form: 

x-c x-c 
f (x) =exp {-a o -a] In (--) -a 2 In [1 +( __ )b II 

a a 
(18.10) 

6 
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where 30 ' a l , and a2 are Lagrange mUltipliers. The mathematical rationale for equation (lS.9) has 
been presented by Tribus (l969). Insertion of equation (lS.lO) into equation (lS.7) yields the 
partition function: 

f= x -c x -c b 
exp(ao)= c ex p (-a]ln(-a-)-a 2 1n[I+(-a-) ]) 

where rc·) is the gamma function. 
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Figure lS.2 LLD3 density function with a = 0.5, l.0, and 2.0; and b = 3. 
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The zeroth Lagrange multiplier is given by equation (18.11) as 

I-a I-a 
ao = In b + In r (-b _I) + In r (a 2 - -b _I ) -In r (a 2 ) (18.12) 

One also gets the zeroth Lagrange multiplier from equation (18.11) as 

[ x-c x-c 
ao = In exp ( - a l ln (--) - a2 In [1 + ( __ )b ]) dx (18.13) 

c a a 

18.1.3 RELATION BETWEEN LAGRANGE MULTIPLIERS AND CONSTRAINTS 

Differentiating equation (18.13) with respect to a] and~, respectively, one gets 

J~ X - c X - C X - c a exp {-a l In (--) -a21n [1 + ( __ )b]}{ -In (--)} dx 
~= c a a a 

J~ x-c x-c 
exp {-a l ln (--) -a 2 1n [1 + ( __ )b ]}dx (18.14) 

c a a 
x-c 

=-E [In(-)] 
a 

f~ x - c x - c x - c 
da o _ exp {-a l ln (--)-a2 1nl 1+(--)b]){ -lnl 1 + ( __ )b]) dx 

c a a a 

f~ x-c x-c 
exp {-a l ln (--) -a 2 1nl 1 +( __ )b 1 }dx 

c a a 
x-c = - E { In I 1 + (- ) b ]} 

a 
(18.15) 

Similarly, differentiation of equation (18.12) with respect to a] and~, respectively, yields 

(18.16) 

(18.17) 

where k] = [I-a] ]Ib and k2 = [~- (1-a])Ib]. Equating equation (18.14) to equation (18.16) and 
equation (18.15) to equation (18.17), we obtain 

x-c 
E [In { 1 + (_)b } ] = 'P (a 2 ) - 'P (k2 ) 

a 

(18.18 ) 

(18.19) 
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18.1A RELATION BETWEEN PARAMETERS AND LAGRANGE MULTUPLIERS 

Insertion of equation (18.12) into equation (18.10) yields 

b f(a ) x-c x-c 
f( x)= 2 (_)-a'[I+(_)b]-a, (1820) 

a f[(l-a])lb]f[a 2 -(l-a])lb] a a . 

A comparison of equation (18.14) with equation (18.2) yields a2 == 2 and a] == I-b. 

18.1.5 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

The LLD3 has three parameers which are related to the Lagrange multipliers by bequations 
(18.18) and (18.19) which, in turn, are related to the constraints through equations (18.20). 
Eliminating the Lagrange multipliers between these two sets of equations yields the relation 
between parameters and constraints. Therefore, we get 

x-c 
E[ln(--)]=O (18.21) 

a 
x-c 

E [ In {1 + (-) b) ] = 1 
a 

(18.22 ) 

However, equations (18.21) and (18.22) need to be supplemented by another equation to get a 
unique determination of parameters a, b, and c. This is obtained by recalling that 

a2 ao x-c 
--2 =Var[In(--)] 
aa] a 

(18.23) 

Differentiation of equation (18.16) produces 

(18.24) 

Equating equation (18.23) to equation (18.24) gives 

(18.25) 

18.1.6 DISTRIBUTION ENTROPY 

The entropy of the LLD3 is given as 

x-c x-c 
I ( f ) = In b -In a + ( b - 1) E [ ( -) b ]- 2 E { In [ 1 + ( -) b II (18.26) 

a a 
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18.2 Parameter-Space Expansion Method 

18.2.1 SPECIFICATION OF CONSTRAINTS 

The constraints for this method are give by equations (18.7)-(18.9). 

18.2.2 DERN ATION OF ENTROPY FUNCTION 

Taking logarithm of equation (18.20), we get 

b 1- a, 1- a, 
In f (x) = In (-;;) + In f (a 2 ) -In f( -b-) -In f( a2 --b-) 

x-c X-C 
-a , In(-)-a 2 In[I+(--)b] 

a a 

(18.27) 

Thus, the entropy function I(f) of LLD3 can be expressed as 

I-a I-a 
I ( f ) = In a -In b + In f ( -b _I ) + In f ( a 2 - -b -' ) -In f( a 2 ) 

(18.28) 
x-c x-c 

+ a, E [ In ( --) ] + a 2 E [ In (1 + ( -) b ) ] 
a a 

18.2.3 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

According to Singh and Rajagopal (1986), the relation between distribution parameters and 
constraints is obtained by taking partial derivatives of the entropy function with respect to 
Lagrange multipliers as well as distribution parameters and then equating these derivatives 
individually to zero. To that end, taking partial derivative of equation (18.28) with respect to ai' 
~,a, b and c separately, and equating each derivative to zero yields 

aI 1 x-c 
-= -b [ - 'I' (k , ) + 'I' (k2 )] + E [In (-) ] = 0 
a, a 

(18.29) 

aI x-c 
-a = 'P (k 2 ) - 'P ( a 2 ) + E [ In (l + ( -) b ] = 0 

a2 a 
(18.30) 

aI 1 a l b {(x-c)/a}b 
-=-- --- a E [ ]=0 
aa a a a 2 I+{I+(x-c)/a}b 

(18.31) 

aI 1 I-a I-a 
-a,;=-b- 'P (k , )(7) + 'I' (k 2 ) (T) =0 (18.32) 
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a I I b { ( x - c ) / a } b-I 
-= -a l E [--]--a E [ b ]=0 (18.33) 
ac x-c a 2 1+{(x-c)/a} 

where k1 = (l-a1)1b, k 2=a2-(1-a1)1b and 1Jr is digamma function = d[ln r(x)]/dx. Simplification 
of equations (18.29) to (18.33), respectively, yields 

x-c 
E [In {l+(-)b) ]='P (a 2 )- 'P (k2) 

a 

(18.34) 

(18.35) 

(18.36) 

{(x-c)/a}bIn{(x-c)/a) 1 l-a l l-a 2 
a2 E[ b ]=-+-2-'P(k l )--2-'P(k2 )(l8.37) 

1+{(x-c)/a} b b b 

{(x-c)/a}b-I 1 
abE [ b ] = - a a E [--] 

2 1+{(x-c)/a) 1 x-c 
(18.38) 

Note that a2=2 and a1=I-b. Therefore, equations (18.34) to (18.38) become 

x-c 
E[In(--)]=O (18.39) 

a 

x-c 
E [ In { 1 + ( -) b } ] = 1 (18.40) 

a 

{(x-c)/a}b 
2 E [ b ]=1 (18.41) 

l+{(x-c)/a) 

{ ( x - c ) / a } b In { ( x - c ) / a } 
2bE[ b ]=1 (18.42) 

I+{(x-c)/a} 

{(x-c)la}b-1 1 
2bE[ b]=a(b-l)E[--] (18.43) 

l+{(x-c)/a} x-c 
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Equations (18.41) and (17.42) are identities which can be proved as follows. For 
equation (17.41) we write 

{ ( x - c ) / a } b f~ { ( x - c ) / a } b (b / a){ ( x - c ) / a } H 

E [ b ] = b b 2 dx 
1+{(x-c)/a} c 1+ (x-c)/a) [1+{(x-c)/a}] 

Y 2b-1 

=b r (1+ yb )3 dy ,y=(x-c)/a (18.44) 

= B ( 2,1) = 1 / 2 ,B (.,.) = beta function 

Therefore, 

{(x-c)/a}b 
2E[ ]=1 

1+{(x-c)/a }b 
(18.45) 

Similarly, we write for equation (18.42): 

{ ( x - c ) / a } b In { ( x - c ) / a } x - c In { ( x - c ) / a } 
E[ 1+{(x-c)/a}b ]=E[ln(-a-)]-E[I+{(x_c)/a}b] 

= _ f~ In { ( x - c) / a }b b { ( x - c ) / a } b-I 
b 2 dx 

c 1+{(x-c)/a} a[I+{(x-c)/a}] 

r~ b In (y ) /-1 
= - J, ( b 3 dy , y = ( x - c ) / a 

o 1 + y ) 

= 0.5 r In (y ) d (1 + / )-2 

1 r~ 2 b = 2b J, In ( z - 1 ) d z - , z = 1 + y 
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1 l' 1 f~ 1 1 1 
=-- 1m In(z-l)--J, (----2 +-)dz 

2b ,-->0 2b I z z Z - 1 

2b 
(18.46) = 

Thus, 

{ ( x - c ) / a } b In { ( x - c ) / a } 
2bE[ ]=1 

I+{(x-c)/a}b 
(18.47) 

Thus, the POME-based estimation equations are equations (18.39), (18.40) and (18.43). 

18.3 Other Methods of Parameter Estimation 

Three other popular methods of parameter estimation are briefly outlined here: the methods of 
moments (MOM), probability-weighted moments (PWM) and maximum likelihood estimation 
(MLE). 

18.3.1 METHODOFMOMENTS 

For the method of moments (MOM), the moment estimators can be expressed, following Ahmad, 
et aI. (1988), as 

E[x] =c+aB(1+IIb, I-lib) (18.48) 

Var[x] = a2 [B(1+21b, l-21b) - B2(1+llb, I-lib)] (18.49) 

G(x) = B(1 +31b,1-31b)-3B(l +21b,1-21b)B(1+ llb,1-11b)+2B3(1 + llb,l-llb) (18.50) 

where E[x], Var[x] and G[x] are the expectation, variance and skewness of X, respectively, and 
B(·,.) is the beta function. Figure 18.3 shows the relation between G and b. Parameters a, b, and 
c are estimated by replacing E(x), ,;var (x) , and G(x) by the sample mean, sample standard 
deviation and sample coefficient of skewness, respectively. 

18.3.2 PROBABILITY WEIGHTED MOMENTS (PWM) 

For the probability weighted moments (PWM), the parameter estimators for LLD3 are given by 
(Guo and Singh, 1992): 

b= (18.51) 
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Figure 18.3 Parameter b versus skewness for LLD3 distribution. 

a= (18.52) 
r(1 + lib )r(1-11b) 

c = Wo -a r(1 + 11b)f(1-11b) (18.53) 

where the k-th probability-weighted moment is 
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aI'(k+I+I/b)r(1-I/b) c 
--------- +---, k = 0, 1,2... (18.54) 

r(k+2) k+1 

Parameters a, b and c may be estimated by the sample probability-weighted moments W k as 

1 ~ i - 0.35 k 
Wk =-£... x; (1- ) ,k =0,1,2, ..... . 

n ;=1 n 
(18.55) 

where Xi is an ordered random sample Xl ,;; X2 ••• ,;; xn, and n is the sample size. 

18.3.3 METHOD OF MAXIMUM LIKELIHOOD ESTIMATION 

For the method of maximum likelihood estimation (MLE), the estimation equations can be 
expressed (Singh and Guo, 1992) as 

~ {(x;-c)la}b 
2£... [ b ]=n 

;=1 1 + { ( x; - c) I a } 
(18.56) 

~ In { ( ( x. - c) I a } { ( x. - c) I a } b ~ 
2b£...[ I I b ]-b£...ln{(x;-c)la}-n=0(18.57) 

;=1 1 + { ( x; - c ) I a } ;=1 

n { (x _ c ) I a } b n 1 
2b L [; b ] - a (b -1) L [-- ] = 0 (18.58) 

;=1 1 + { ( x; - c ) I a } ;=1 x; - c 

where n is the sample size. These three equations were solved using an iterative scheme. First, 
with an assumed value of b and c, equation (18.56) was solved for a. With this value of a and 
the initial guess of c, equation (18.57) was solved to give a new value of b. Then, a new value 
of c was calculated from equation (18.58). The iterative scheme was terminated when the 
parameters no longer changed significantly. 

18.4 Comparative Evaluation of Parameter Estimation Methods 

18.4.1 MONTE CARLO SIMULATED SAMPLE DATA 

Guo and Singh (1992) and Singh et al. (1993) made a comparative assessment of MOM, MLE, 
PWM and POME using Monte Carlo simulated data. Their work is briefly summarized here. 
Two population cases, listed in Table 18.1, were considered. For each population case, 1000 
random samples of size 20, 50 and 100 were generated, and then parameters and quantiles were 
estimated. The samples were generated using equation (18.3) and Figure 18.3, with the proviso 
that the population mean ~ = 1, the coefficient of variation = 0.5, and the coefficient of skewness 
= 0.5, and 2.0. This range of the skewness coefficient encompasses a broad class of hydrologic 
data. 
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18.4.2 PERFORMANCE INDICES 

The performance of the parameter estimation methods was evaluated using the standardized bias 
(BIAS) and root mean square error (RMSE) of both parameters and quantiles. The number of 
samples of 1000 may arguably not be large enough to produce the true values of BIAS and 
RMSE, but will suffice to compare the performance of different estimation methods. 

18.4.3 BIAS OF PARAMETER ESTIMATES 

The values of BIAS in parameter estimates for LLD3 showed that for G = 0.5, of the four 
methods, POME yielded the least bias in parameter estimates for all sample sizes. However, its 
bias increased slightly with increasing sample size. The bias by PWM fluctuated with the sample 
size. MOM had less bias than MLE, but for both methods, the bias showed only a small reduc­
tion with increasing sample size. For G = 2.0, in absolute terms POME produced the least bias, 
PWM the second least bias except for n = 20, and MLE produced the third least bias. The 
highest bias was produced by MOM except for n = 20. With increasing sample size, the bias by 
MOM as well as by PWM decreased significantly. This was true for all three parameters. Thus, 
in terms of parameter bias, it is concluded that POME is the preferred estimator, regardless of 
the sample size and skewness. 

Table 18.1 LLD3 population cases considered in sampling experiments. 

LLD3 CV G a b c 
Population 

Case 1 0.5 0.5 4.843 13.773 -3.868 

Case 2 0.5 2.0 1.387 5.653 -0.459 

18.4.4 RMSE OF PARAMETER ESTIMATES 

The values of RMSE of parameters estimated by the four methods showed that for G = 0.5, 
POME, MOM and MLE had comparable RMSE values in estimates of all three parameters for 
all sample sizes. PWM produced unrealistically high RMSE values. When G = 2.0, MLE and 
POME yielded comparable RMSE values for the three parameters. MOM had quite high RMSE 
values but they declined for large sample sizes. PWM did not perform well. Thus, overall 
POME or MLE would be preferable. However, for small values of skewness, MOM would be 
an equally good choice. 

18.4.5 BIAS OF QUANTILE ESTIMATES 

The results of bias in quantile estimation for LLD3 showed that for G = 0.5, MOM and PWM 
produced the least bias in quantile estimates for all sample sizes if the probability of 
nonexceedance (P) was less than or equal to 0.90. Of course, all four methods had fairly low 
bias. For P ~ 0.99, POME produced the highest bias, and PWM, MOM and MLE had low 
biases, with their comparative values depending upon the values of P and sample size n. For G 
= 2.0 and P :::; 0.9, POME had the least bias, and PWM had the second smallest bias, irrespective 
of the sample size. When P increased past 0.9, the bias of POME deteriorated for small sizes. 
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Overall, MOM, PWM, MLE and POME yielded quite low values of bias. It may, therefore, be 
inferred that for low values of G (!> 0.5) and P (!> 0.9), PWM is the preferred method but for high 
values of G, POME would be preferable. For large values of P (:? 0.99), MLE or MOM would 
be preferred. For high values of G, POME would be preferable for P !> 0.90, but PWM would 
be preferable for P past the value of 0.999. 

18.4.6 RMSE OF QUANTllE ESTIMATES 

The values of RMSE in quantile estimates of the four methods showed that for G = 0.5 and P !> 

0.9, all four methods produced comparable values of RMSE, with MOM having the lowest 
RMSE values and PWM the highest. When P :? 0.99, RMSE of POME as well as MLE 
deteriorated significantly, especially for small sample sizes and low values of G, but MOM and 
MLE remained comparable. For G = 2.0, POME produced the least RMSE for all sample sizes. 
For P !> 0.9, all estimators were comparable, and for P :? 0.99, MLE and POME were 
comparable. Thus, it may be concluded that for high values ofG, POME is the preferred method, 
especially for P:? 0.99, but MLE is also a good choice. For low values ofG, anyone of the four 
estimators would be adequate if P !> 0.9, but MLE or MOM would be preferable for P :? 0.99. 

18.4.7 CONCLUDING REMARKS 

Of the four methods, POME yielded the least parameter bias for all sample sizes. POME was 
comparable to MOM and MLE in terms of RMSE of parameters estimates. For high skewness 
(G = 2.0), the bias in quantile estimates by POME was comparable to that by MOM, MLE and 
PWM. For low values of skewness (G = 0.5), POME was comparable to the other 3 methods for 
lower values of probability of nonexceedance. However, POME performed poorly when P 
exceeded 0.99. In terms of RMSE in quantile estimates, POME was either better than or com­
parable to the other 3 methods, especially for large values of skewness and large return periods. 
Overall, POME performed the best for G :? 2.0 and P :? 0.9; MLE for G !> 0.5 and P > 0.9, and 
PWM for G !> 0.5 and P !> 0.9, G :? 2 and P !> 0.8. In the cases tested, MOM performed 
reasonably well and usually in between the best and the worst estimators. 
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CHAPTER 19 

TWO-PARAMETER PARETO DISTRIBUTION 

The Pareto distribution was introduced by Pickands (1975) and has since been applied to a 
number of areas including socio-economic phenomena, physical and biological processes 
(Saksena and Johnson, 1984), reliability studies and the analysis of environmental extremes. 
Davison and Smith (1990) pointed out that the Pareto distribution might form the basis of a broad 
modeling approach to high-level exceedances. DuMouchel (1983) applied it to estimate the 
stable index IX to measure tail thickness, whereas Davison (1984a, 1984b) modeled 
contamination due to long-range atmospheric transport of radionuclides. van Montfort and 
Witter (1985, 1986, 1991) applied the Pareto distribution to model the peaks over threshold 
(POT) streamflows and rainfall series, and Smith (1984, 1987) applied it to analyze flood 
frequencies. Similarly, Joe (1987) employed it to estimate quantiles ofthe maximum of a set of 
observations. Wang (1991) applied it to develop a peak over threshold (POT) model for flood 
peaks with Poisson arrival time, whereas Rosbjerg et al. (1992) compared the use of the 
2-parameter Pareto and exponential distributions as distribution models for exceedances with the 
parent distribution being a generalized Pareto distribution. In an extreme value analysis of the 
flow of Burbage Brook, Barrett (1992) used the Pareto distribution to model the POT flood series 
with Poisson interarrival times. Davison and Smith (1990) presented a comprehensive analysis 
of the extremes of data by use of the Pareto distribution for modeling the sizes and occurrences 
of exceedances over high thresholds. 

Methods for estimating parameters of the 2-parameter Pareto distribution were reviewed 
by Hosking and Wallis (1987). Quandt (1966) used the method of moments (MOM), and Baxter 
(1980), and Cook and Mumme (1981) used the method of maximum likelihood estimation 
(MLE). MOM, MLE, and probability weighted moments (PWM) were included in the review. 
van Montfort and Witter (1986) used MLE to fit the Pareto distribution to represent the Dutch 
POT rainfall series, and used an empirical correction formula to reduce the bias of the scale and 
shape parameter estimates. Davison and Smith (1990) used MLE, PWM, a graphical method, 
and least squares to estimate the Pareto distribution parameters. Singh and Guo (1995) employed 
the principle of maximum entropy (POME) to derive a new method of parameter estimation 
(Singh and Rajagopal. 1986) for the 2-parameter Pareto distribution. Monte Carlo simulated data 
were used to evaluate this method and compare it with the methods of moments (MOM), 
probability weighted moments (PWM), and maximum likelihood estimation (MLE). The 
parameter estimates yielded by POME were either superior or comparable for small sample sizes 
when bias and root mean square error (RMSE) were used as the criteria, and were either 
comparable or adequate for large sample sizes. Their work is followed here. 

For a random variable X, the two-parameter Pareto distribution (PD2) has the cumulative 
distribution function (cdf) given by 

V. P. Singh, Entropy-Based Parameter Estimation in Hydrology
© Springer Science+Business Media Dordrecht 1998
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F(x) = 1 - ( ~r ' x > a, b > 0 (l9.1a) 

and the probability density function (pdf) given by 

f(x) = b ab x ·b·) (l9.1b) 

where a is the location parameter and b is the shape parameter. The shapes of the Pareto 
distribution for various values of b are illustrated in Figure 19.1. 
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Figure 19.1 2-parameter Pareto density function with b = 1.5,2.5,5; line: b = 1.5, dash: b = 2.5, 
and plus: b = 5. 

19.1 Ordinary Entropy Method 

19 .1.1 SPECIFICATION OF CONSTRAINTS 

Taking logarithm to the base e of equation (l9.1a), one gets 
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In f ( x ) = In b + b In a - ( b + 1 ) In x (19.2a) 

Multiplying equation (19.2a) by [- f(x)] and then integrating, one obtains the entropy function: 

I ( f ) = - r [ In b + b In a - ( b - 1 ) In x ] f ( x ) dx 

= -In b - b In a + ( b -1 ) E [ In x ] 
(19.2b) 

Following Singh and Rajagopal (1986), the constraints from equation (19.2b), appropriate for 
equation (19.1b), are 

r f(x) dx = 1 (19.3) 

f.- Inx f(x) dx = E[lnxl (19.4) 

These constraints specify the information sufficient for PD2. Because the information is 
determined from data, the parameters and other statistics of the distribution can be physically 
interpreted. 

19.1.2 CONSTRUCTION OF ZEROTH LAGRANGE MULTIPLIER 

The least-biased pdf of PD2 corresponding to POME and consistent with equations (19.3) and 
(19.4) takes the form 

f(x) = exp( - 110 - al In x) (19.5) 

where 110 and a l are Lagrange multipliers. The mathematical rationale for equation (19.5) has 
been presented by Tribus (1969), Levine and Tribus (1978), among others. By applying equation 
(19.5) to the total probability condition in equation (19.3), one obtains 

f.- f(x) dx = f.- exp( - 80 - a l Inx) dx = 1 (19.6) 

Equation (19.6) produces the partition function as 

exp(ao ) = r exp ( - a j In x )dx (19.7a) 

which yields 

(19.7b) 

The zeroth Lagrange multiplier is given equation (19.7b) by 
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30 = -In (al - 1) - (al - 1) In a (19.8) 

The zeroth Lagrange multiplier is also obtained from equation (19.7a) as 

110 = In [ Ja~ exp( - al Inx) dx] (19.9) 

19.1.3 RELATION BETWEEN LAGRANGE MULTIPLIERS AND CONSTRAINTS 

The relation between Lagrange multipliers and constraints is obtained by taking partial 
derivatives of the zeroth Lagrange multiplier with respect to other Lagrange multipliers. Thus, 
differentiation of equation (19.8) with respect to a l yields 

(19.10) 

Differentiation of equation (19.10) with respect to a l gives 

(19.11) 

Differentiating equation (19.9) with respect to a l gives 

a 110 Ja~ exp( - 110 - al Inx) Inx dx 

aa l Ja~ exp( - 110 - al lnx) dx 

= - J: exp( - 110 - al Inx) lnx dx = - E [lnx] (19.12) 

Differentiation of equation (19.12) with respect to al yields 

&~ f~ a~ 
-2 = - exp(- ao - al lnx) lnx (- - - lnx) dx 
aa l a aa l 

aa (19.13) 
= _0 f~ exp( - ao - al lnx) lnx dx + f~ exp( - ao - al lnx) ln2x dx aal a a 

= - E2[lnx] + E[ln2(x)] = Var(lnx) 

where Var(. ) denotes the variance of the quantity within brackets, (.). Equating equation (19.10) 
to equation (19.12), and equation (19.11) to equation (19.13) yields 

1 - -- - Ina = - E[lnx] 
al - 1 

(19.14) 



316 

---=-- = Var(lnx) 
(a1 - 1)2 

(19.15) 

19.1.4 RELATIONBETWEENPARAMETERSANDLAGRANGEMULTIPLIERS 

Insertion of equation (19.8) into equation (19.5) yields 

a -I -a f(x) = (a1 - 1) a I x I (19.16) 

A comparison of equation (19.16) with equation (19.1b) yields 

(19.17) 

19.1.5 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

The PD2 has two parameters a and b which are related to the Lagrange multipliers by equation 
(19.17) which, in tum, are related to the constraints by equations (19.14) and (19.15). Eliminating 
the Lagrange multipliers between these two sets of equations yields relations between parameters 
and constraints. Therefore, 

1 
- + Ina = E[lnx] 
b 

1 
- = Var(lnx) 
b 2 

19.1.6 DISTRIBUTION ENTROPY 

The entropy function I(x) of PD2 can be defined as 

I(x) = -In b - b In a + (b + 1) E{ln x] 

where E[.] denotes the expectation of the quantity within brackets [.]. 

19.2 Parameter-Space Expansion Method 

19.2.1 SPECIFICATION OF CONSTRAINTS 

(19.18) 

(19.19) 

(19.20) 

Following Singh and Rajagopal (1986), the constraints for this method from equation (19 .2b) are 
given by equation and 

r ( b + 1 ) In x dx = E [ ( b + 1 ) In x ] (19.21 ) 

19.2.2 DERIVATION OF ENTROPY FUNCTION 

The pdf corresponding to POME and consistent with equations (19.3) and (19.21) takes the form 
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f ( x) = ex p [ - a 0 - a 1 (b + 1) In x ] (19.22) 

where 30 and a l are Lagrange multipliers. Insertion of equation (19.22) in equation (19.3) yields 
the partition function: 

exp (ao ) = f~ exp (- al (b + 1) In x dx 
a 

(19.23) 

= -I+al (b+l) 

The zeroth Lagrange multiplier is given by taking the logarithm of equation (19.23) as 

a 0 = -In [ a 1 (b + 1 ) -I ] + [ 1- a 1 (b + I) In a ] 

The zeroth Lagrange multiplier is also obtained from equation (19.24) as 

ao =Infexp[ -al(b+I)Inx]dx 

Introduction of equation (19.24) in equation (19.22) gives 

f (x)=[a 1 (b+l)_I]a-[l-ad b++l)] x -ad h+l ) 

A comparison of equation (19.26) with equation (19.1b) shows that a l = 1. 
The entropy function can be written as 

I ( f ) = -In [ a 1 (b + 1 ) -I ] + [ 1- a 1 (b + 1 ) ] In a + 

+ a l(b+l)E[x] 

19.2.3 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

(19.24) 

(19.25) 

(19.26) 

(19.27) 

Taking partial derivatives equation (19.27) with respect to ai' a, and b separately and equating 
each derivative to zero results in 

JI b+l 
--- Ina(b+I)+(b+I)InE[x]=O (19.28) 
Ja l - a l (b+l)-l 

JI _1-al(b+l) 0 
Ja a 

(19.29) 

(19.30 ) 
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Simplification of equations (19.28)- (19.29) and noting that a l equals I, respectively, leads to 

I 
'b+ In a = E [x] (19.31) 

b=O (19.32) 

1 
'b+1na = E [x] (19.33) 

Equations (19.31) and (19.33) are identical and equation (19.32) is trivial. Thus, only one useful 
equation is obtained and one more equation is needed. This is got as before. Therefore, the 
parameter estimation equations are same as for the ordinary method. 

19.3 Other Methods of Parameter Estimation 

19.3.1 METHODOFMOMENTS 

For the method of moments (MOM), the moment estimates are given as 

b = 1 + (1 + _1_ )0.5 
Cv 2 

a = x (b - 1) 
b 

where x and Cv are, respectively, mean and coefficient of variation defined as 

x =~ =!t x. 
b - 1 n i =1 I 

n 

Cv = ~ = 1 a = [ :E 
x [b(b - 2)]°·5 ' i=1 

where n is the number of observations (or sample size). 

(Xi - x)2] 0.5 

n -1 

19.3.2 METHOD OF MAXIMUM LIKELIHOOD ESTIMATION 

(19.34) 

(19.35) 

(19.36) 

(19.37) 

For the method of maximum likelihood estimation (MLE), the maximum likelihood estimate 
ofb is 

b = __ -=n=--__ 
n 

:E Inxi - nIna 
i = 1 

(19.38) 
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An MLE estimate cannot be obtained for a by differentiating the likelihood function (L) since 
L is unbounded with respect to a. Because a is the lower bound of the random variable X, L is 
maximized subject to the constraint a s. Xl' and the lowest sample value Xl indeed gives a, i.e., 
a=x l · 

19.3.3 METHOD OF PROBABILITY WEIGHTED MOMENTS 

The probability weighted moment (PWM) estimates are given by 

(19.39) 

a = (19.40) 

where Wo and WI are the probability-weighted moments defined as 

W = (I a(l - F)-lib dF = ~ 
o Jo b - 1 

(19.41) 

W = (I a(l - Fr llb (1 - F) dF = ~ 
I Jo 2b - 1 

(19.42) 

19.4 COMPARATIVE EVALUATION OF ESTIMATION METHODS 
USING MONTE CARLO EXPERIMENTS 

19.4.1 MONTE CARLO SAMPLES 

Guo and Singh (1992) and Guo and Singh (1995) assessed the performance of the POME, 
MOM, MLE, and PWM estimation methods using Monte Carlo sampling experiments. Three 
Pareto population cases, listed in Table 19.1, were considered. For each population case, 1000 
random samples of size 20, 50, and 100 were generated, and then parameters and quantiles were 
estimated. 

Table 19.1 Pareto population cases considered in sampling 
experiment (fl = 1). 

Pareto Cv Parameter 
Population 

a b 

Case 1 0.5 0.691 3.236 

Case 2 1.0 5.86 2.414 

Case 3 3.0 0.513 2.054 
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18.4.2 PERFORMANCE INDICES 

The performance of the parameter estimation methods was evaluated using the following 
performance indices: standardized bias (BIAS) and root mean square error (RMSE) for both 
parameters and quantiles.1t may be noted that the number of Monte Carlo samples (N) of 1,000 
may arguably not be large enough to produce the true values of BIAS and RMSE, but will 
suffice to evaluate the performance of the POME estimation method and compare its 
performance with that of the other three methods. 

18.4.3 BIAS IN PARAMETER ESTIMATES 

Of the four methods, MOM produced the highest bias in estimates of both parameters a and b 
across all sample sizes and the range ofthe coefficient of variation. For large sample sizes (N ~ 
100) POME, MLE and PWM yielded the very low but comparable values of bias. Except for 
MOM, the parameter bias did not increase with increasing Cv. Indeed the bias was little 
affected by Cv. For small sample sizes (N !': 20), POME and MLE produced the least but 
comparable values of bias. With increasing sample size, PWM's performance improved 
significantly. Thus, it is inferred that if the sample size is less than or equal to 20, POME or 
MLE will be the preferred parameter estimation method. However, forN ~ 50, PWM, POME 
or MLE with be comparable and either of these three methods could be used. 

18.4.4 RMSE IN PARAMETER ESTIMATES 

The method producing the highest RMSE across all sample sizes and the range of Cv was 
MOM. For the remaining 3 methods, the RMSE values were comparable for sample size N ~ 
50 for all values ofCv. However, forN !': 20, PWM produced high values ofRMSE in estimate 
of parameter a, but not for b. The value of RMSE was not materially affected by the variation 
of Cv for any method. For N ~ 50, MLE resulted in the least RMSE in estimates of parameter 
b. In this case, the preference of a particular method should be decided by the sample size. If 
N ~ 20, MLE or POME would be the preferred method. For N ~ 50, either POME, PWM or 
MLE would be an acceptable choice. 

18.4.5 BIAS IN QUANll..E ESTIMATES 

The performance of the four estimation methods varied with the probability of nonexceedance 
P, sample size n, and the coefficient of variation of variation Cv. For P ~ 0.9, MLE and POME 
produced the least bias, but MOM and PWM performed satisfactorily. Thus, regardless of nand 
Cv, any of the four methods could be used. For P ~ 0.99, MLE consistently produced the least 
bias and POME the second least bias across all sample sizes and the range of Cv. For small N, 
PWM's bias was the highest, and MOM's the second highest. For small sample sizes, either 
MLE or POME would be the preferred method. 
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18:t6 RMSE IN QUANTILE ESTIMATES 

For P ,,; 0.9, the four methods were comparable for all sample sizes and the range of Cv. For 
P ~ 0.99, the lowest RMSE was produced by MOM and the second lowest by MLE. PWM 
yielded the highest RMSE and POME the second highest. Thus, in this case, MOM would be 
the preferred method, especially when N was small; for large N, MLE or POME would be 
satisfactory . 

18.4.7 CONCLUDING REMARKS 

To summarize, when sample size (N ,,; 20) was small, POME produced less or comparable 
parameter bias. In terms of RMSE, POME was comparable to MLE and preferable to other 
methods for N ,,; 20. For P ,,; 0.9, in terms of bias in quantile estimates, POME was comparable 
to other three methods, and preferable to PWM and MOM for small sample sizes. For P ,,; 0.9 
in terms of RMSE, POME was comparable to the other 3 methods. For P ~ 0.99, POME was 
comparable to MLE for large sample sizes. 
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CHAPTER 20 

TWO-PARAMETER GENERALIZED PARETO DISTRIBUTION 

The Pareto distribution has been introduced in Chapter 19. Also discussed in the chapter are a 
brief review of literature and the methods of estimating its parameters. Kotz and Johnson (1985) 
provided a detailed discusson of the Pareto distributin. Methods for estimating parameters of the 
2-parameter generalized Pareto (GP2) distribution were reviewed by Hosking and Wallis (1987). 
The method of moments (MOM), maximum likelihood estimation (MLE) , and probability 
weighted moments (PWM) were included in the review. Ashkar and Ouarda (1997) presented 
some methods of fitting the GP2 distribution using Monte Carlo generated data. They discussed 
six versions of the generalized method of moments. Wang (1991) derived PWMs for both 
known and unknown thresholds. van Montfort and Witter (1991) used the MLE method to fit the 
GP2 distribution to represent the Dutch POT rainfall series, and used an empirical correction 
formula to reduce bias of the scale and shape parameter estimates. Davison and Smith (1990) 
used MLE, PWM, and a graphical method to estimate the GP2 distribution parameters. Guo and 
Singh (1992) and Singh and Guo (1997) employed the principle of maximum entropy (POME) 
to derive a new method of parameter estimation (Singh and Rajagopal, 1986) for the GP2 
distribution. They used Monte Carlo simulated data to evaluate this method and compare it with 
he MOM, PWM, and MLE methods. The parameter estimates yielded by POME were 
comparable or better within certain ranges of sample size and coefficient of variation. 

Consider a random variable Y with the standard exponential distribution. Let a random 
variable X be defined as X = b(1 - exp (- a Y))/a, where a and b are parameters. Then the 
distribution of X is the 2-parameter generalized Pareto (GP2) distribution which can be expressed 
as 

F(x) = 1 - (l - a ~)lIa, (20.1) 

x 
= 1 - exp (- b)' a=O (20.2) 

where b is a scale parameter, a is a shape parameter, and F(x) is the cumulative distribution 
function (edt) The probability density function (pdt) of the GP2 distribution follows: 

f(x) = 1. (1 X)l/a-1 
b - a b ' (20.3) 

1 x 
= - exp (- -), 

b b 
a=O (20.4) 

V. P. Singh, Entropy-Based Parameter Estimation in Hydrology
© Springer Science+Business Media Dordrecht 1998



325 

O. 

Z 
0.8 

a 
t3 0.7 

Z 
:::::> 0.6 lL. 

>- 0.5 .... 
CJ) 

Z 0.4 
W 
C 

0.3 
>-.... 
:J 0.2 
CD « 0.1 al 

~ 0.0 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Ul 

X 

Figure 20.1 (a) Generalized Pareto density function with b = 1, a = -0.1, -0.5, and -1.0; line: a = 
-0.1, dash: a = -0.5, and plus: a = -1.0. 

The Pareto distributions are obtained for a < O. Figure 20.1 graphs the pdf for b = 1.0, 
and various values of a. Pickands (1975) has shown that the GP distribution given by equations 
(20.1) and (20.2) occurs as a limiting distribution for excesses over thresholds if and only if the 
parent distribution is in the domain of attraction of one of the extreme-value distributions. The 
GP2 distribution specializes into the exponential distribution for a = 0 and the uniform 
distribution on [0, b) for a = 1. 

Some important properties of the GP2 distribution worth mentioning are: (1) By 
comparison with the exponential distribution, the GP2 distribution has a heavier tail for a < 0 
(long-tailed distribution) and a lighter tail for a > 0 (short-tailed distribution). When a < 0, X has 
no upper limit, i.e., 0 s x < 00; there is an upper bound for a > 0, i.e., 0 s x s bfa. This property 
makes GP2 distribution suitable for analysis of independent cluster peaks. 

(2) In the context of the partial duration series, a truncated GP2 distribution remains a 
GP2 distribution with the original shape parameter a remaining unchanged. This property is 
popularly referred to as 'threshold stability' property (Smith, 1984, 1987). Consequently, if X has 
a GP distribution for a fixed threshold level Qo, then the conditional distribution of X - c, given 
x ;:, c, corresponding to a higher threshold Qo + c also has a GP distribution. If the lower bound 
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c in the distribution is unknown then the 3-parameter GP distribution is obtained by replacing 
x in equations (20.3) and (20A) by x-c. This is one of the properties that justifies the use ofGP 
distribution to model excesses. 

z o 

I. 

1.5 

G 1.4 
Z 
:::> 
lL. 1.2 

>­
I-
C/) 
Z 
uJ a 

>­
I-
-I 
m « 
m 
o s: 

06 

OA 

0.2 

" " " 

..-
,/ ,-

, 
I 

I 

/ , 

___ -._ ........ _. 0_0_. ___ ._" _______ " ___ 

0.V1,-----.----.----r---r--r-----,-....l..y---r----.---r 
0.0 0.2 0.4 0.6 0.8 1.0 

X 
1.2 1.4 1.6 1.8 2.0 

Figure 20.1 (b) Generalized Pareto distribution with b = I, a = 0.5, 0.75, 1.0, and 1.25; line: a = 
0.5, plus: a = 0.75, star: a = 1.0, and dash: a = 1.25. 

(3) If the Wakeby distribution is parameterized as suggested by Hosking (1986), then this 
distribution can be considered as a generalization of the GP distribution. 

(4) Let Z = max (0, Xl' X 2, ... , X N), N > 0 is a number. If Xi' i = 1, 2, ... , N, are 
independent and identically distributed as GP distribution, and N has poisson distribution, then 
Z has a generalized extreme value (GEV) distribution (Smith, 1984; Jin and Stedinger, 1989; 
Wang, 1990), as defined by Jenkinson (1955). Thus, a Poisson process of exceedance times with 
generalized pareto excesses implies the classical extreme value distributions. As a special case, 
the maximum of a Poisson number of exponential variates has a Gumbel distribution. So 
exponential peaks lead to Gumbel maxima, and GP2 distribution peaks lead to GEV maxima. 
The GEV distribution, discussed in Chapter 11, can be expressed as 
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(20.5a) 

= exp [- exp (- z-Y)], 8=0 
P 

(20.5b) 

where the parameters 8, 13 and Y are independent of z. Furthermore, 8 = a; that is, the shape 
parameters of the GEV and GP2 distributions are the same. Note that Z is not allowed to take 
on negative values, and P(Z < 0) = 0 and P(Z = 0) = exp(- )..), and only for z ~ 0 the cdf is 
modeled by the GEV distribution. This property makes the GP2 distribution suitable for 
modeling flood magnitudes exceeding a fixed threshold. 

(5) The properties 2 and 3 characterize the GP2 distribution such that no other family has 
either property, and make it a practical family for statistical estimation, provided the threshold 
is assumed sufficiently high. 

(6) The failure rater(x) = f(x)/{ I-F(x)} is expressed asr(x) = l/[b - ax] and is monotonic 
in X, decreasing if a < 0, constant if a = 0, and increasing if a > O. 

20.1 Ordinary Entropy Method 

20.1.1 SPEClFICA TION OF CONSTRAINTS B 

The entropy of the GP distribution can be expressed using equation (20.3) as 

I(x) = In b f(x) dx - (- - 1) In [1 - - x] f(x) dx i~ II i~ a 
o a 0 b 

(20.6) 

The constraints appropriate for equation (20.3) can be written (Singh and Rajagopal, 1986) as 

fo~ f(x)dx = 1 (20.7) 

r~ In [1 - a ~] f(x)dx = E[In [1 - a ~]] 
Jo b b 

(20.8) 

in which E[·] denotes expectation of the bracketed quantity. These constraints are unique and 
specify the information sufficient for the GP2 distribution. The first constraint specifies the total 
probability. The second constraint specifies the mean of the logarithm of the inverse ratio of the 
scale parameter to the failure rate. Conceptually, this defines the expected value of the negative 
algorithm of the scale failure rate. 

20.1.2 CONSTRUCTION OF ZEROTH LAGRANGE MULTIPLIER 

The least-biased pdf of the GP2 distribution corresponding to POME and consistent with 
equations (20.7) and (20.8) takes the form: 

f(x) = exp [- ao - at In (1- a ~)] 
b 

(20.9) 
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where ao and at are Lagrange multipliers. The mathematical rationale for equation (20.9) has 
been presented by Tribus (1969). By applying equation (20.9) to the total probability condition 
in equation (20.7), one obtains 

exp (ao) = roo exp (- at In [1 - a ~ ]) dx 
10 b 

(20.10) 

which yields the partition function: 

b I exp (ao) = - --
a I -a, 

(20.11) 

Taking logarithm of equation (20.11) yields the zeroth Lagrange multiplier given as 

b I 
ao = In [- --] = Inb -Ina -In (I-a,)] 

a I -at 
(20.12) 

The zeroth Lagrange multiplier is also obtained from equation (20.10) as 

ao = In exp (- at In [1 - a - ]) dx f oo x 

o b 
(20.13) 

20.1.3 RELATION BETWEEN LAGRANGE MULTIPLIERS AND CONSTRAINTS 

Differentiating equation (20.13) with respect to at: 

oao fooo exp {- at In[I - a(xIb)]l In[I - a(xIb)] dx 

oat 1000 exp[ - aa Inl1 - a(xIb)l]dx 

= - fooo exp {- aa - at In[I - a(xIb)]l In[1 - a(xIb)] dx 

= - E {In[I - a(xIb)]l 

Similarly, differentiating equation (20.11) with respect to at yields 

Ja o = __ 

Ja) 1-a) 

Equating equations (20.14) and (20.15) gives 

1 a x 
--=- E [In(1--)] 
1-a) b 

(20.14) 

(20.15) 

(20.16) 
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The GP2 distribution has two parameters so two equations are needed. The second equation is 
obtained by noting that 

(20.17) 

Differentiating equation (20.15), we get 

(20.18) 

Equating equations (20.17) and (20.18), we obtain 

(20.19) 

20.1.4 RELATION BETWEEN PARAMETERS AND LAGRANGE MULTIPLIERS 

Inserting equation (20.11) in equation (20.9) yields 

a(t - a ) 
f(x) = 1 (1 - a ~-)'I 

b b 

A comparison of equation (20.20) with equation (20.3) yields 

t 
1 - a1 = -

a 

20.1.5 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

(20.20) 

(20.21) 

The GP2 distribution has two parameters, a and b, which are related to the Lagrange multipliers 
by equation (20.21) which, in tum, are related to the constraints by equations (20.16) and (20.18). 
Eliminating the Lagrange multipliers between these two sets of equations yields relations 
between parameters and constraints. Therefore, the parameter estimation equations are 

ax 
a = - E [ In (1-b) ] (20.22) 

2 ax 
a = Var [In (1- b) ] (20.23) 
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20.1.6 DISTRffiUTION ENTROPY 

The entropy of the GP2 distribution is given by 

(I-a) a 
I ( f ) = In b - a E [1- b x ] (20.24) 

20.2 Parameter-Space Expansion Method 

20.2.1 SPECIFICATION OF CONSTRAINTS 

Following Singh and Rajagopal (1986), the constraints for this method turn out to be the same as 
for the ordinary entropy method and are given by equations (20.7) and (20.8). 

20.2.2 DERIVATION OF ENTROPY FUNCTION 

Taking the natural logarithm of equation (20.20), we get 

In f(x) = In a + In (1 - al ) -In b - a l In [1 - a ~] 
b 

Therefore, the entropy I(t) of the GP2 distribution follows: 

I(t) = -In a -In (1 - a l ) + In b + al E {In [1 - a ~]} 
b 

20.2.3 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

(20.25a) 

(20.25b) 

According to Singh and Rajagopal (1986), the relation between distribution parameters and 
constraints is obtained by taking partial derivatives of the entropy function I(t) with respect to 
Lagrange multipliers (other than zeroth) as well as distribution parameters, and then equating 
these derivatives to zero, and making use of the constraints. To that end, taking partial derivatives 
of equation (20.25) with respect to aI' a, and b and equating each derivative to zero yields 

aI I - a ~]} = 0 - = -- + EUn[1 
aal I -al b 

aI I xIb ]=0 -=---a E[ 
aa a I 1 - a(xIb) 

aI 1 - E [ xIb ]=0 
ab = b + a l I - a(xlb} 

Simplification of equations (20.26) to (20.28) yields, respectively, 

{ xl E In [1 - a -]} = ---
b I-al 

(20.26) 

(20.27) 

(20.28) 

(20.29) 
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E [ xlb 1 (20.30) 
1 - a (xIb) aa, 

E[ x/b 1 (20.31) 
1 - a (x/b) aa, 

Clearly, equation (20.30) is the same as equation (20.31). With a, expressed by equation 
(20.21), equations (20.29) and (20.30) are the POME-based estimation equations 

20.3 Other Methods of Parameter Estimation 

Three other popular methods of parameter estimation are briefly outlined: the method of moments 
(MOM), the method of probability-weighted moments (PWM), and the method of maximum 
likelihood estimation (MLE). 

20.3.1 METHODOFMOMENTS 

For the method of moments (MOM) the moment estimators ofthe GP2 distribution were derived 
by Hosking and Wallis (1987). Note that E(1 - a (xlb)') = 11(1 + ar) if! + ra > o. The rth moment 
of X exists if a > - 1Ir. Provided that they exist, then the moment estimators are 

1 j( 2 
a = - (- - I) 

2 S2 

1 - 2 
b = - j( (~ + 1) 

2 S 2 

where x and S2 are the mean and variance, respectively. 

20.3.2 PROBABILITY WEIGHTED MOMENTS 

(20.32) 

(20.33) 

For the method of probability weighted moments (PWM), the PWM estimators of the GP2 
distribution were given by Hosking and Wallis (1987) as 

(20.34) 

b = (20.35) 

where 

Wr = E{x(F) [1 - F(x)fl = ~ [_1_ - _1_1 ,r = 0,1, ... 
a r+l a+r+1 

(20.36) 
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20.3.3 METHOD OF MAXIMUM LIKELIHOOD ESTIMATION 

The method of maximum likelihood estimation (MLE) estimators can be expressed as 

n x. 
E I n (20.37) 

- a x.1b 1 -a i=l I 

1 n n x. 
-E In [1 - a xilbj + (1 - a) E I = 0 (20.38) 
a i=l i=l b - ax. 

I 

A successive iterative procedure based on the Golden search method was adopted to obtain the 
estimates of a and b. First, an initial value of a was assumed. Then, with the use of the Golden 
search method, the optimal value ofb leading to the maximum of log-likelihood function (log L) 
was obtained. Then by fixing b, parameter a was re-established leading to the maximum log L. 
This procedure was continued until parameters a and b no longer significantly changed. As an 
example, for population parameters a = -00444 and b = 0.556, the MLE estimates were found by 
this method for a sample size of 10. 

20.4 Comparative Evaluation of Parameter Estimation Methods 

2004.1 MONTE CARLO SAMPLES 

Guo and Singh (1992) and Singh and Guo (1997) assessed the performance ofthe POME, MOM, 
PWM and MLE methods using Monte Carlo sampling experiments. They considered three 
population cases as listed in Table 20.1. For each population case, 1000 random samples of size 
20, 50, and 100 were generated, and then parameters and quantiles were estimated. The work of 
Guo and Singh is briefly summarized here. 

Table 20.1. GP2 population cases considered in sampling 
experiment [mean, 11 = 1; Cv = coefficient of 
variation] 

GPD2 Parameter 

Population 
Cv 

a b 

Case 1 1.5 -0.278 0.722 

Case 2 2.0 -0.375 0.625 

Case 3 3.0 -00444 0.556 

20.4.2 PERFORMANCE INDICES 

The performance of estimation methods was evaluated using the standardized bias (BIAS) and 
root mean square error (RMSE) for both parameter and quantile estimates. It should be noted that 
the number (n) of Monte Carlo samples of 1,000 may arguably not be large enough to produce the 
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true values of BIAS and RMSE, but will suffice to compare the performance of estimation 
methods. 

20.4.3 BIAS IN PARAMETER ESTIMATES 

The bias values of parameters estimated by the four methods showed that the parameter bias 
varied with sample size and Cv. In general, the parameter bias decreased with increasing sample 
size, but its variation with Cv was not consistent. For all sample sizes, MOM always produced 
the highest parameter bias in both parameters a and b, whereas POME, PWM, and MLE produced 
quite low parameter bias, especially for sample size n ~ 50. For Cv ~ 1.5 and n ~ 50, POME 
produced the least bias, followed by PWM and MLE. When Cv ~ 2.0 and n s 20, PWM produced 
the least bias, but the bias by MLE and POME was quite low. Thus, POME would be the 
preferred method for Cv ~ 1.5. 

20.4.4 RMSE IN PARAMETER ESTIMATES 

The values of RMSE of parameters estimated by the four methods showed that in general, RMSE 
decreased with increasing sample size for a specified Cv. However, for a given sample size, the 
variation of RMSE with Cv followed a decreasing trend for parameter a but did not follow a 
consistent pattern for parameter b. In general, PWM had the lowest RMSE and MOM the highest 
RMSE for both parameters a and b, but the differences between the RMSE value of PWM and 
those of POME and MLE, and even MOM (except for small sample sizes n s 20) were quite 
small. For n ~ 50, and Cv ~ 1.5, all four methods were comparable. Thus, for samples with Cv 
~ 1.5, either of POME, MLE and PWM could be chosen. 

20.4.5 BIAS IN QUANTILE ESTIMATES 

The results of bias in quantile estimates for GP2 distribution showed that the bias of a given 
method, in general, varied with the sample size, the value of Cv, and the probability of non­
exceedance (P). For P s 0.90 and n s 20, the bias by POME was either less than or comparable 
to that ofPWM and MLE. For Cv ~ 2.0 and n ~ 50, MLE produced the least bias, and POME and 
PWM were comparable. For 0.99 s P s 0.999 and n ~ 50, POME and PWM were comparable. 
When n was s 20, POME as well as MLE did not perform well, especially for Cv ~ 3.0. Thus, 
for large sample sizes, anyone of the three methods--POME, PWM and MLE--could be used. 
However, the required sample size would be much larger for larger Cv. For small samples and 
high Cv, PWM would be the preferred method. 

20.4.6 RMSE IN QUANTILE ESTIMATES 

The values of RMSE in quantile estimates of the four methods are given in Table 20.5. RMSE 
of a given method significantly varied with sample size (n), the probability of nonexceedance (P), 
and the coefficient of variation (Cv). In general, POME and MLE produced the highest RMSE, 
especially for Cv ~ 1.5, and MOM the least RMSE across all sample sizes and the range of Cv. 
Thus, MOM would be the preferred method, and PWM the second preferred method. For P s 0.8, 
all methods were more or less comparable for all sample sizes and the range of Cv. 
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20.4.7 CONCLUDING REMARKS 

To summarize, in terms of parameter bias, POME is comparable to PWM and MLE. POME was 
comparable to MLE or PWM in terms of RMSE of parameter estimates. For P <;; 0.9 and n <;; 20, 
POME produced the least bias in quantiles estimates. For 0.9 <;; P <;; 0.99 and n ~ 50, POME and 
PWM were comparable. (5) For P <;; 0.99, the RMSE of PO ME was comparable to that ofPWM 
and MLE but higher than that of MOM. 
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CHAPTER 21 

THREE-PARAMETER GENERALIZED PARETO 
DISTRffiUTION 

The Pareto distribution has been introduced in Chapter 19. Also discussed there is a brief review 
of literature and methods of estimating its parameters. Further elaboration of the distribution is 
given in Chapter 20. Methods of parameter estimation were reviewed by Hosking and Wallis 
(1987). The methods of moments (MOM), maximum likelihood estimation (MLE) and 
probability weighted moments (PWM) were included in the review. Guo and Singh (1992) and 
Singh and Guo (1995) employed the principle of maximum entropy (POME) to develop a new 
competitive method of parameter estimation (Singh and Rajagopal, 1986) for the 3-parameter 
generalized Pareto (GP3) distribution and compared it with MOM, MLE and PWM using Monte 
Carlo simulated data. The parameter estimates yielded by POME were either superior or 
comparable for high skewness. 

Consider a random variable Y with the standard exponential distribution. Let a random 
variable X be defined as X = b(l - exp (- aY))/a, where a and b are parameters. Then the 
distribution of X is the 2-parameter generalized Pareto distribution. If c is a threshold or lower 
bound of X, then the distribution of X is the 3-parameter generalized Pareto (GP) distribution 
which can be expressed as 

F(x) = 1 - (1 X -C)l/a -a-b- , (21.1) 

x-C = 1 - exp (- -b-) , a=O (21.2) 

where c is a location parameter, b is a scale parameter, a is a shape parameter, and F(x) is the 
distribution function. The probability density function (pdf) of the GP distribution follows: 

f(x) = 1. (1 - a ~)I/a-I 
b b' 

(21.3) 

1 x-c = - exp (- -) 
b b ' 

a=O (21.4) 

Some of the properties of the Pareto distribution are discussed in the preceding chapter, apply 
to the GP3 distribution, and will therefore not be repeated here. 

V. P. Singh, Entropy-Based Parameter Estimation in Hydrology
© Springer Science+Business Media Dordrecht 1998
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21.1 Ordinary Entropy Method 

21.1.1 SPECIFICATION OF CONSTRAINTS 

The entropy of the GP3 distribution can be expressed as 

I(f) = In b f- f(x) dx + (.!. - 1) f- In [1 - a(x -c)] f(x) dx 
cae b 

(21.5) 

From equation (21.5), the constraints appropriate for equation (21.3) can be written (Singh and 
Rajagopal, 1986) as 

r f(x)dx = 1 (21.6) 

In [1 - a -] f(x)dx = E[In [1 - a -ll f- x-c x-c 
ebb 

(21.7) 

in which E[.] denotes expectation of the bracketed quantity. The first constraint specifies the 
total probability. The second constraint specifies the mean of the logarithm of the inverse ratio 
of the scale parameter to the failure rate. Conceptually, this defines the expected value of the 
negative logarithm of the scaled failure rate. 

21.1.2 CONSTRUCTION OF ZEROTH LAGRANGE MULTIPLIER 

The least-biased pdf of the GP3 distribution corresponding to POME and consistent with 
equations (21.6) and (21.7) takes the form: 

f(x) = exp [-110 - a,ln (1 _ a x -c)] 
b 

(21.8) 

where 110 and a, are Lagrange multipliers. Applying equation (21.8) to the total probability 
condition in equation (21.6), one obtains 

exp (110) = exp (- a, In [1 - a -]) dx f- x-c 
c b 

which yields the partition function: 

Taking logarithm of equation (21.10), we get the zeroth Lagrange multiplier as 

Equation (21.11) is recast as 

b 1 1Io=ln[- --] 
a I -a, 

(21.9) 

(21.10) 

(21.11) 
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30 = In (b/a) -In (1 - at) (21.12) 

The zeroth Lagrange multuplier is also obtained by taking logarithm of equation (21.9) 
as 

30 = In exp (- at In [1 - a -]) f OO x-c dx 
c b 

(21.13) 

21.1.3 RELATION BETWEEN LAGRANGE MULTUPLlERS AND CONSTRAINTS 

Differentiating equation (21.13) with respect to at: 

aao {OO exp {- at In[I - a(x-c)lbj} In[l - a(x-c)lbj dx 

fcOO exp[- ~ In{} - a(x-c)lb}jdx 

= - fcoo exp {- ~ - at In[I - a(x -c)lbj} In[I - a(x -c)lbj dx 

= - E{[I - a(x -c)lbj} (21.14) 

Following Tribus (1969), we can write 

(21.15) 

where V ar[·] is the variance of the bracketed quantity. 
Differentiating equation (21.12) with respect to a] once and then again results in: 

(21.16) 

(21.17) 

Equating equation (21.16) to equation (21.14) leads to: 

x -c I 
E [In (1 - a -)] = ---

b 1 - at 
(21.18) 

When equation (21.17) is equated to equation (21.15), the following is obtained: 

Var [In (1 - a x -c)j = __ _ 
b (l - a t )2 

(21.19) 
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21.1.4 RELATION BETWEEN PARAMETERS AND LAGRANGE MULTIPLIERS 

Inserting equation (21.10) into equation (21.8), we get 

a(1 - a ) 
f(x) = 1 (1 - a ~fa, 

b b 
(21.20) 

A comparison of equation (21.20) with equation (21.3) yields 

1 
1- a1 = - (21.21) 

a 

21.1.5 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

The GP3 distribution has three parameters which are related to the Lagrange multipliers by 
equation (21.21) which, in tum, are related to the constraints by equations (21.18)-(21.19). 
Eliminating the Lagrange multipliers between these two sets of equations yields relations 
between parameters and constraints. Therefore, 

E[ 1 ]=_1_ 
1 - a(x-c)1b I-a 

Var[ln(l-a x-c)]=a2 

b 

(21.22) 

(21.23) 

The GP3 distribution has three parameters; therefore, three equations are needed for estimation 
of its parameters. This means that equations (21.22) and (21.23) need to be supplemented. This 
is accomplished by setting parameter c as the lowest value of the observations in the sample. 

21.1.6 DISTRIBUTION ENTROPY 

The entropy of the GP3 distribution is given as 

1 a(x-c) 
I (f ) = In b + (;-1) E { In [1- b ]} (21.24) 

21.2 Parameter-Space Expansion Method 

21. 2.1 SPECIFICATION OF CONSTRAINTS 

Following Singh and Rajagopal (1986), the constraints for this method are given by equations 
(21.6) and 

J~ 1 a ( x - c ) 1 a ( x - c ) 
(--l)In[l- b ]f(x)dx=E[(--I)In{l- b }]dx (21.25) 

c a a 

The pdf corresponding to POME and consistent with equations (21.6) and (21.25) takes the form: 
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1 a(x-c) 
f (x)=exp{ -an -a] (--I)In[I- ]) 

a b 

Inserting equation (21.26) into equation (21.6) yields the partition function: 

J~ 1 a (x - c) 
exp(ao)= c exp {-a](;-I)In[I- b ]}dx 

Equation (21.27) simplifies to 

b 
exp(a o)= 1 

a[I-a] (--1)] 
a 

Taking logarithm of equation (21.28) gives the zeroth Lagrange multiplier: 

1 
ao = In b -In a -In [1- a] (--1) ] 

a 

Introduction of equation (21.29) in equation (21.26) gives the POME-based pdf: 

a 1 a (x - c) -a, (~-]) 
f(x)=-{I-a [--I]} [1- ] a 

b ] a b 

A comparison of equation (21.30) with equation (21.3) shows that a l =-1. 

(21. 26) 

(21.27) 

(21.28) 

(21.29) 

(21.30) 

Taking logarithm to the base 'e' of equation (21.30) and multiplying it minus one by 
give 

1 1 a(x-c) 
-In f (x)=-Ina +lnb-In[l-a](;-I)]+a] (;-I)In[I- b ] (21.31) 

Therefore, the entropy function I(f) of the GP3 distribution follows: 

1 1 a(x-c) 
I (f) = -In a + In b -In [1- a] (--1)] + a J (--1) E [In {I- b } ] (21.32) 

a a 

21.2.2 RELATION BETWEEN PARAMETERS AND CONSTRAINTS 

According to Singh and Rajagopal (1986), the relation between distribution parameters and 
constraints is obtained by taking partial derivatives of the entropy ICf) with respect to Lagrange 
multipliers as well as distribution parameters, and then equating these derivatives to zero, and 
making use of the constraints. To that end, taking partial derivatives of equation (20.32) with 
respect to aI' a, b and c separately and equating each derivative to zero yields 
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.!.-1 
_-"a __ + (.!.-I)EUn[1 - a _x-_c1} ~ 0 

1 a b l-a(--I) 
1 a 

(2l.33) 

aI 
aa a 

(21.34 ) 

~ ~ l. + al (.!.-I) E [ a(x-c)/b2 1 ~ 0 
ab b a 1 - a(x -c)/b 

(2l.35) 

aI 1 alb 
-~al(--I)E[ l~O 
ac a 1 - a (x -c)/b 

(2l.36) 

Simplification of equations (21.33) to (21.36) yields, respectively, 

E {In [1- a _x-_c]} = ___ ....:..1 __ 

b 1-a1 (..!..-1) 
a 

(2l.37) 

E [ (x-c)/b 1 + 1 E[ln(1 a(x-c»l~ +_-=-____ _ 
1 - a (x -c)/b ( 1- a) a b (a - 1) al a ( 1 - a) 1 _ a (.!. _ 1 ) 

1 a 

(2l.38) 

E [ (x -c)/b 1 = __ ---= __ 
1 - a (x-c)/b aa l (l.-I) 

a 

(2l.39) 

E [ 1 1 ~ 0 
1 - a (x -c)/b 

(21.40) 

Clearly, equation (21.40) does not hold. Recall that a l = -Unserting a l = 1 - 1Ia from equation 
(21.21) into these three equations, one gets 

From equation (21.38) we obtain 

E[ln(1-a x-c)]=_a 
b 

(21.41 ) 

(x-c)lb 1 a(x-c) 
E[ ]+ E[ln{l- }]=o (21.42) 

l-a(x-c)lb a(l-a) b 

Taking advantage of equation (21.39), equation (21.42) simplifies to 
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1 1 
E[ ]=-

I-a(x-c)/b I-a 
(21.43 ) 

Thus, the estimation equations are equations (21.41) and (21.43). In order to get a unique 
solution, an additional equation is needed and this is obtained in the same manners as in the 
ordinary entropy method. This means that equation (21.23) will hold in this case too. Therefore, 
the parameter estimation equations by POME consist of equations (21.41), (21.43) and (21.23). 

21.3 Other Methods of Parameter Estimation 

Three other popular methods of parameter estimation are briefly outlined: the method of 
moments (MOM), the method of probability-weighted moments (PWM), and the method of 
maximum likelihood estimation (MLE). 

21.3.1 METHODOFMOMENTS 

For the method of moments (MOM), the moment estimators ofthe GP3 distribution were derived 
by Hosking and Wallis (1987). Note that E(1 - a (x-c)/b)' = 1/(1 + ar) if 1 + ra > O. The rth 
moment of X exists if a > - 1/r. Provided that they exist, then the moment estimators are 

x =c+ 
b 

1 +a 

b 2 S2= ____ _ 
(1 +af (1 +2a) 

G = 2(I-a) (1 +2a)O.5 

1 +3a 

(21.44) 

(21.45) 

(21.46) 

where x, S2 and G are the mean, variance and skewness, respectively. First, the moment estimate 
of a is obtained by solving equation (21.46). The relation between G and a is graphed in Figure 
21.1. With a calculated, band c follow from equation (21.44) and (21.45) as 

b = S (1 + a) (1 + 2a)0.5 

c = x - b 
b+a 

21.3.2 METHOD OF PROBABILITY -WEIGHTED MOMENTS 

(21.47) 

(21.48) 

For the method of probability-weighted moments (PWM), the PWM estimators for the GP3 
distribution (Hosking and Wallis, 1987) are given as 

a= 
Wo - 8W1 + 9W2 

- Wo + 4W1 - 3W2 

(21.49) 



b = _(W.-::...o _-_2_W--=....I)_(_W..::.o_-_3 W--=..2)_(_-_4_W--=....1 _+_6_W-=-2) 

(- Wo + 4W1 - 3wi 

where the r-th probability-weighted moment Wr is 

1.0 

QS" 

d 0.6 

0:: 0.4 
lJJ 
ti 0.2 
~ 
<{ 0.0 
0:: 
~ -0.2 

-0.4 

-0.6 

-o.s 

Wr = E[x(F) (1 - F(x)),] = r 1 {c + E.. [1 - (1 - F)a]) (1 - F)r dF 
Jo a 

1 b b 1 = - (c+ -)- - -- ,r=O, 1,2, ... 
r+1 a a a+r+l 
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(21.50) 

(21.51) 

(21.52) 

-1.0 'r-T ........ ~--r-r-r.,.-,..-,-r-r-r~r-r-..-,....,...-r-"',....,......,.....,,...,....,....,-r-'""I""""T 
o 2 3 

SKEWNESS G 
Figure 21.1. Parameter a versus skewness G for GPD3. 

21.3.3 METHOD OF MAXIMUM UKELIHOOD ESTIMATION 

For the method of maximum likelihood estimation (MLE), the MLE estimators can be expressed 
as 

t _(-,x;:....-_c)_Ib_ = ~ 
;=1 I - a(x; -c)1b I-a 

(21.53) 
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n 

L In [1 - a (Xi - c)/b] = - na (21.54) 
i=i 

A maximum likelihood estimator cannot be obtained for c, because the likelihood function is 
unbounded with respect to c, as shown in Figure 21.2. Since c is the lower bound of the random 
variable X, we may use the constraint c ,,;; Xl' the lowest sample value. Clearly, the likelihood 
function is maximum with respect to c when c = Xl' 

I 

o 
-I 

-2 

~ -3 
I­
U z 
£r -

0.1 0.2 03 0.4 0.5 0.6 0.7 

PARAMETER c 

Figure 21.2. Likelihood function of GPD3 versus parameter c for sample size 10. 
Line: a = -0.116, b = 0.387, c = 0.562 
Dash: a = 0.544, b = 1.116, c = 0.277 

21.4 Comparative Evaluation of Parameter Estimation Methods 

21.4.1 MONTE CARLO SAMPLES 

Guo and Singh (1992) and Singh and Guo (1997) assessed the performance of the POME, 
MOM, PWM and MLE estimation methods using Monte Carlo sampling experiments. They 
considered two distribution population cases listed in Table 21.1. For each population case, 
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1000 random samples of size 20, 50, and 100 were generated, and then parameters and quantiles 
were estimated. Their work is summarized here. 

21.4.2 PERFORMANCE INDICES 

The performance of the parameter estimation methods was evaluated using the performance 
indices of standardized bias (BIAS) and root mean square error (RMSE). The number of samples 
(n) of 1,000 may arguably not be large enough to produce the true values of BIAS and RMSE, 
but will suffice to compare the performance of estimation methods. 

Table 21.1. GP distribution population cases considered in the sampling experiment 
[Mean = I, Cv = coefficient of variation, and G = coefficient of skewness]. 

GP Distribution Parameters 

Population 
Cv G 

a b c 

Case 1 0.5 0.5 0.554 1.116 0.277 

Case 2 0.5 2.5 -0.069 0.433 0.536 

21.4.3 BIAS IN PARAMETER ESTIMATION 

The bias values of parameters estimated by the four methods showed that for G = 0.5, in absolute 
terms MOM produced the least bias of the four methods for all sample sizes. MLE had the 
second least bias in parameter estimates. With increasing sample size, there was significant 
reduction in bias for all four methods. POME produced less bias in estimates of b and c for all 
sample sizes than PWM, but that was not uniformly true in case of the parameter a estimate. 
When G = 2.5, these methods performed quite differently. For all samples sizes, MLE and 
POME were comparable, producing the least bias. For the parameter a and c estimates, POME 
had the least bias, but MLE had the least bias for the parameter b estimate. PWM had the highest 
bias in all three parameter estimates for all sample sizes. Thus, if the value of G is high, POME 
or MLE may be the preferred method. For lower values of G, MOM or MLE may be preferable, 
especially when the sample size is small. 

21.4.4 RMSE IN PARAMETER ESTIMATION 

The values of RSME of parameters estimated by the four methods showed that for G = 0.5, of 
the four methods MOM produced the least RMSE in the parameter a estimate. However, as the 
sample size increased, MOM, PWM and MLE became comparable. In case of the parameters 
band c estimates MLE had the least RMSE, but all four methods were comparable. For G = 2.5, 
the comparative behavior of the four methods was markedly different. In absolute terms, MOM 
and PWM produced the highest RMSE in parameter estimates for all sample sizes, with POME 
having the least bias in the parameter a estimate but MLE in the parameter b and c estimates. 
Thus, it may be concluded that for lower values of G, MOM or PWM may be the preferred 
method, but for higher values of G, MLE or POME is the preferred method. 
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21.4.5 BIAS IN QUANTILE ESTIMATION 

The results of bias in quantile estimates by the GP3 distribution showed that the performance of 
the four estimation methods varied with the value of G, and probability of non-exceedance P. 
For G = 0.5, all four methods had comparable bias for P ~ 0.9 for all sample sizes. When P <: 

0.99, MOM and PWM produced the smallest bias and POME the highest, with MLE in the 
intermediate range. However, for G = 2.5, POME produced the least bias, especially when P was 
greater than 0.99. For all sample sizes, all four methods were somewhat comparable. In 
conclusion, for lower values of G, anyone of the four methods may be used for P < 0.99, but 
PWM, MOM or MLE may be preferable for P exceeding 0.99. For higher values ofG, all four 
methods were comparable, but for P exceeding 0.99 POME is the preferred method. 

21.4.6 RMSE IN QUANTILE ESTIMATION 

The values of RMSE in quantile estimates of the four methods showed that for G = 0.5, for P ~ 
0.9, all four methods produced comparable values of RMSE for all sample sizes; for P <: 0.99, 
performance of POME deteriorated. When G = 2.5, all methods produced comparable values 
of RMSE for all sample sizes for P ~ 0.9; for P <: 0.99 POME had the least RMSE. Thus, it is 
inferred that for smaller values of G, MOM, PWM or MLE may be used, but for higher values 
of G, POME may be the preferred method. 

21.4.7 CONCLUDING REMARKS 

To summarize, when the skewness was high (G = 2.5), POME yielded superior parameter 
estimates. For low skewness (G = 0.5), POME was better in parameter estimates than MLE and 
PWM but worse than MOM. However, for large sample sizes, its performance improved signifi­
cantly. POME produced either better or comparable quantile estimates as compared with MOM, 
MLE and l?WM for high skewness (G = 2.5). For low skewness (G = 0.5), POME was 
comparable to MOM, MLE and PWM for lower probabilities of nonexceedance for higher 
values, MOM or PWM was better than POME. 
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CHAPTER 22 

TWO-COMPONENT EXTREME VALUE DISTRffiUTION 

It is well known that floods may be generated by different physical mechanisms. For instance, 
most of the annual flood maxima at a particular site might be the result of a primary mechanism, 
such as frontal storms. A smaller fraction of the events, however, might be associated with a 
secondary mechanism, such as rain on snow with frozen soils, that occasionally gives rise to 
floods larger than those associated with the primary mechanism. In this regard, Rossi et al. (1984) 
proposed a two-component extreme value distribution. This distribution belongs to the family 
of distributions of the annual maxima of a compound Poisson process, which forms a theoretical 
basis for annual flood series analysis. Single-component distribution methods of estimating 
return periods and probabilities of flood events do not work well when runoff originates from 
nonhomogeneous sources, i.e., when a mixture random variables is involved. The most important 
consideration in selecting a distribution for use in flood frequency analysis is the behavior of the 
right tail of the distribution. It is from the right tail that return periods and probabilities of rare 
events are determined. The two-component extreme value (TCEV) distribution permits a 
reasonable interpretation of the physical phenomenon which generates floods and is able to 
account for most of the characteristics of the real world flood data, important among them being 
the large variability of the sample skewness coefficient which mostly gives rise to the poor 
performance of many of the commonly used flood frequency distributions. The two component 
extreme value (TCEV) distribution has been shown to account for most of the characteristics of 
the real flood experience. The TCEV distribution also offers a practical approach to regional 
flood frequency estimation. Theoretical properties of the TCEV distribution have been widely 
investigated (Rossi, et al., 1984; Beran, et al., 1986; Rossi, et al., 1986; Fiorentino et al., 1987a, 
b). In his extensive review of a large number of commonly used distributions, Cunnane (1986) 
concluded that only the two-component extreme value distribution and the Wakeby distribution 
satisfied the important reproductive criterion--an ideal distribution must reproduce at least as 
much variability in flood characteristics as is observed in empirical data. 

A random variable X is defined to have a two-component extreme value (TCEV) 
distribution if its probability density function (pdf) is given by 

. -).,2 exp( -xI8 2 )];x > 0 (22.1) 
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(22.2) 

where A1 > 0,A2 ~ 0, O2 ~ 01 > 0 are parameters. Its cumulative density function (cdt) is 

(22.3) 

For simplicity, it is assumed that equation (22.1) holds for non-positive values of X. This 
approximation is reasonable in all practical applications of the TCEV distribution (Rossi, et al., 
1984). 

The cdf of TCEV given in equation (22.3) has been shown (Versace, et al., 1982; Rossi, 
et al., 1984) to represent the distribution function of the annual maximum (represented by the 
random variable X) of a nonnegative random variate Z whose number of occurrences, K, in a 
year is a random variable when the following hypotheses hold: (1) Z is an independent, 
identically distributed (iid) random variable with probability density function defined by a 
mixture of two exponential distributions; (2) K is an iid Poisson distributed variate; and (3) Z and 
Z are independent of each other. The two components of the distribution of both Z and X are 
usually referred to as basic component (subscripts of parameters = 1) and outlying component 
(subscripts of parameters = 2). The basic component distribution generates ordinary floods, and 
the outlying component distribution exhibits a much greater variability than does the basic one 
and tends to generate rarer but more severe floods. The four parameters of TCEV distribution 
characterize the mean number of independent peaks in a year (AI and A2) and the mean peak 
amplitude (0 1 and O2) of the basic and outlying components. The outlier distribution is 
characterized by a mean number of events A2 much smaller than Al and by a mean flood 
magnitude O2 larger than the corresponding parameter 0 1 ofthe basic distribution. The shapes of 
the distribution vary for different values of AI, A2, 01 and O2 • 

Three parameter estimation methods have been proposed for fitting the TCEV 
distribution to annual flood series. Canfield (1979) suggested a least squares technique, while 
Rossi, et al. (1984) presented a procedure based on the maximum likelihood estimation (MLE) 
method. Using the MLE method, Fiorentino, et al. (1985) developed a regional estimation 
algorithm. Small sample properties of the site-specific and regionalized TCEV -MLE procedure 
were assessed by Fiorentino and Gabriele (1985), and Arnell and Gabriele (1986). In particular, 
the latter compared the regionalized TCEV-MLE algorithm with other regional estimators. 
Although various features of the TCEV -MLE method exhibited a competitive performance, an 
improvement of the site-specific estimators was suggested by Fiorentino and Gabriele (1985). 
Furthermore, Fiorentino, et al. (1986) noted that regional estimates of some parameters could be 
still improved. Using the principle of maximum entropy (POME), Fiorentino et al. (1987 a,b) 
developed another method for estimating parameters of the TCEV distribution. The POME 
method of parameter estimation is suitable for application in both the site-specific and regional 
cases and appears simpler than the maximum likelihood estimation method. Statistical properties 
of this regionalized estimation procedure were evaluated using a Monte Carlo approach and 
compared with those of the maximum likelihood regional estimators. 

22.1 Ordinary Entropy Method 

22.1.1 SPEClFICA TION OF CONSTRAINTS 

Taking logarithm to the base 'e' of equation (22.1), one gets 
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1 X x Infix) =In 1\.) -In 8) - - - A) exp( --) 
8 t 8) 

x (A/02)exp(-xI02 ) 
+ 1..2 exp ( - -) + In [ 1 + ] °2 At x (-)exp(--) 

0) 0t 

(22.4) 

Multiplying equation (22.4) by [-f (x) ] and integrating between 0 and 00 yield the entropy 
function: 

lex) = - r: In f(x)j(x) dx = (In 0) - In 1..) r: f(x) dx + 

+ ~ r: x f(x) dx + A) r: exp( - xIO) f(x) dx + 
) 

+ 1..2 r: exp( -xI02) f(x) dx -

(1..2 /°2 ) exp(-xI02 ) - f-: In[ 1 + ] f(x) dx 
- (1..)/O)exp(-xIO) 

From equation (22.5) the equations of constraints can be written as: 

r: f(x) dx = 1 

r: x f(x) dx = E[x] 

r: exp( -xI8t )f(x) dx = E[exp(-xIO)] 

r: exp(-xI02)f(x)dx = E[exp(-xI02)] 

f~ (1..2/°2) exp( - x102) 
In(l + f(x) dx 

-~ (1..)/8) exp( - xIO) 

(1../82) exp( - x102 ) 
=E[In(l+ )] 

(1..)/81) exp( -xIOI ) 

(22.5) 

(22.6) 

(22.7) 

(22.8) 

(22.9) 

(22.10) 

The constraints are to be evaluated from data, directly or indirectly. It may be noted that 
the first three constraints are the same as those used for deriving BV1 distribution (Jowitt, 1979; 
Singh, et al., 1985), while the fourth constraint, which is analogous to the third one, provides 
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information on the outlying component. The final constraint combines the information between 
the basic and outlying components. 

22.1.2 CONSTRUCTION OF ZEROTH LAGRANGE MULTIPLIER 

The least biased pdf, f (x), consistent with equations (22.6) - (22.lO) and based on POME, takes 
the form: 

(22.11) 

where ao' aI' a2, a3, and a4 are Lagrange multipliers. The zeroth Lagrange multiplier ao is 
determined as follows. Inserting equation (22.11) in equation (22.6), we get the partition 
function: 

(22.12) 

Letz=z = Al exp(-xI81),8 = 8/81,1.. = = A = 1../(1..:'6). After simple manipulation, 
the zeroth Lagrange multiplier is obtained: 

. [I A «1/6)-1) ]-a4 d + - Z z 
8 

(22.l3) 

One also gets the zeroth Lagrange multiplier from equation (22.12) as 

(22.14) 
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Let us refer to the integral in equation (22.13) as 10 , Inserting equation (22.13) into equation 
(22.11), we get 

(22.15) 

When 

(22.16) 

integral 10 becomes unity and equation (22.15) becomes equation (22.1) 

22.1.3 RELATION BETWEEN CONSTRAINTS AND PARAMETERS 

The relationship between the parameters of TCEV distribution and the constraints are specified 
by partially differentiating ao given by equation (22.13) with respect to al' a2 , a3 , and a4 

respectively. 

aao 
- = - E[x] = - a In A + a r~ Iny exp( -y - Ay(l/B» . aa I I I Jo 

I 

· (1 + ~ y«(l/B)-I» dy 
a 

· (1 + ~y«(l/B)-I»dy 
a 

aao 1 J:~ B _ = -E[exp(-xla )] = -_ y(lI) • aa3 2 AIIB 0 

· exp (-y - A. y(lIB» (1 + ~ y«lIB)-I» dy 
a 

aao (A2 /a2) exp( -xla2 ) 
- = -E[ln(1 + ] aa4 (A/a,)exp( -xla l ) 

= - r~ In(1 + ~ y«I/B)-1» exp(-y _ A yIlB). 
Jo a 

. (1 + ~ y(l/B)-I»)dy 
a 

(22.17) 

(22.18) 

(22.19) 

(22.20) 
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Solving integrals in equations (22.17) to (22.19) provides, one gets 

E[x] e l In Al + e l Y - e l L (-1~,) A} r(jle) 
}=I J. 

(22.21) 

E[exp(-xle l )] =l..[1 +-.!.t (-1)}~r(j/e) 
Al e}=1 (j-l)! 

(22.22) 

E[exp( -xle2 )] __ 1_ t (-I)}}j r( '/e) 
e A2 j=1 (j -1) ! } 

(22.23) 

where y = 0.5772 is the Euler's constant and ro is the gamma function. Equations (22.21) 
to (22.23) are also indicated by Beran et a1. (1986). e and A are dimensionless parameters, 
already defined in terms of the four parameters of the TCEV distribution. The integral in 
equation (22.20) cannot be solved explicitly. But, for e > 1.5, it is closely approximated by the 
following function 

= 0.1 exp( -1) (3 + e)2.059 A(ln3 - 2(5.5)'") (22.24) 

Therefore, the fourth constraints can be related to the parameters by 

(22.25) 

The goodness of this approximation is shown in Figure 22.1. The curves approximating the 
expectation in equation (22.20) have not been plotted for e < 1.5 to avoid any confusion at the 
left-bottom where they tend to overlap with each other. Moreover, the goodness of the 
approximation deteriorates in this range. 

Equations (22.21) - (22.23) and (22.25) show that constraints are related to the moments 
or moment -ratios of the distribution. In fact, besides the obvious case of the constraint E [y I (x) ] 
representing the population mean of x, it is clear that E [y 4 (x)] depends on the dimensionless 
parameters e and A only, while both E[Y3(x)] and E[Y2(X)] depend on e,A and Al (note 
that A2 is a function of Al via e and A). A similar dependence is exhibited by the theoretical 
coefficients of skewness (and kurtosis) and variation respectively as can be easily shown using 
expressions of the moments given by Beran, et al. (1986). This implies that the estimation of 
the constraints will likely have a variability increasing with the rank. 

Figure 22.2, where A=z, compares E[Y4(X)] =E[Z] with the mean of the transformed 
variate y (or u) 
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y=u=~-lnl.. 8 1 
1 

(22.26) 

which is also TCEV distributed and depends on 8 and I.. only. Skewness and kurtosis of both 
Y ( or U) and X variates are the same, while the mean of Y is given by dividing the last two 
terms on the right-hand side of equation (22.21) by 81 • One can note that E[Y4 (x)] exhibits a 
shape similar to that of E [Y] and that it is more sensitive to changes in either 8 or 1.., 
particularly in the range oflow values. This stipulates that entropy should provide dimensionless 
parameter estimates much less variable than those based on the method of moments. 

8=8 765 4 3 
1.0 

0.1 

0.003 0.01 
A 

0.1 

Figure 22.1 Mean of E[Z] versus A for various values of 8. 

Furthermore, equation (22.23) shows that E [Y3 ] is also related to the probability, P 2' that 
the annual maximum value of X comes from the outlying component, P 2 having been derived 
by Beran, et al. (1986) as 

2y 
2/ 
1.5 

1.0 
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P = - ~ t (-1)1 A1 r(/8) 
2 8 10 ] U-I)! 

(22.27) 

fufact, combining equations (22.23) and (22.27) gives E[ exp( - xI82 )] = P/ A2 • Analogously, 
it can be shown that E [ exp ( - x /8] )] = P / A] , where P 1 represents the chance that the annual 
maximum value of X comes from the basis component. 
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E [ U ] 

Skewness of u 
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9 In A 

4 

Figure 22.2 Variation of mean and skewness coefficient of the transformed TCEV variate, and 
mean of E[Z] with parameters A and 8. 

A graph showing P 2 versus 8 In A has been provided by Beran, et al. (1986). It shows 
that for a given value of P2 , 8 is a quasi-linear function of 8 In A in almost the entire 
difinition range of A. This suggests that an approximate relationship solely between P 2 and A 
(or A) can be confidently used for first order calculations. Figure 22.3 shows the goodness of 
this approximation, which has the following equation: 
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Figure 22.3 Outlier probability versus A for various values of 8. 

22.1.4 ESTIMATION OF PARAMETERS 

355 

(22.28) 

(22.29) 

22.1.4.1 Point Estimation: Equation for estimation of parameters can be obtained by 
substituting sample values for the population means on the left-hand side of equations (22.21) 
to (22.23) and (22.25). The system of equations to be solved for giving estimates of the four 
parameters of the TCEV distribution thus takes the form: 

1.0 
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(22.30) 

(22.31) 

(22.32) 

(22.33) 

where the bar indicates that the sample mean of the underlying function is considered. For 
simplicity, the left-hand sides of equations (22.30) and (22.33) will be hereafter referred to 
as }\ ' ... 'Y4 ,respectively. Eliminating A2 by way of 8, A and Al ' and rearranging, we get 

(22.34) 

~ 

+ Y - L (22.35) 
j=1 

(22.36) 

0.1 exp(-1)(3 (22.37) 

Putting Y3 and Y4 respectively in the form: 

(22.38) 

1 I-A Y x 1 
+ __ --=-I ...::.2 exp[ -_ (_ -1)]) 

8AI Y3 81 8 

(22.39) 

One obtains thatthe only unknown in equation (22.37) is 8. On the other hand: (1) Adoes 
not appear on the right-hand side in equation (22.36); (2) 8 1 is the only unknown once 8 and A 
have been evaluated in equation (22.35); and (3) Al does not appear on the right-hand side in 
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equation (22.34). Therefore, a successive substitution iterative scheme can be developed for 
estimating the four parameters as follows. Assign tentative values to 0 and A ,then successively 
estimate 01 by equation (22.35), Al by equation (22.34), 0 by equation (22.37), and A by 
equation (22.36). Substitute the last values of 0 and A for those previously obtained and start 
again from estimation of 01, Stop when 6 and A no longer change. Note that the procedure is 
fast because equation (22.34) and (22.36) admit solution in closed form and equations (22.35) and 
(22.37), though not explicit, can be easily solved numerically, for each exhibits one unknown 
only. 

22.1.4.2 Regional Estimation: A regional flood frequency estimation algorithm can be developed 
using equations (22.34) - (22.37) (obviously together with equations (22.38) and (22.39)), which 
can also be used to validate the regionalization model proposed by Fiorentino, et al. (1985) and 
also described in Fiorentino, et al. (1986). In short, this model assumes that dimensionless 
parameters 6 and A do not change over extensive regions, while parameter Al is constant in 
smaller areas. In this chapter, a regionalization algorithm, based on POME, to estimate 0 and A 
is presented. 

Suppose there are k gauged sites in a selected region which is assumed to be homogeneous 
with respect to 0 and A. Let each site have an annual flood series (APS) with n years of record. 
At each site, one must estimate the basic component parameters 61 and AI' which vary from site 
to site, plus the two regional values of 0 and A. Hence, there are in practice 2k + 2 unknowns. 
An equal number of independent equations is then needed. 

The first 2k equations of the algorithm proposed herein arise from writing equations 
(22.34) and (22.35) k times, once for each available APS. The other two equations are derived 
by taking the average of left-hand sides of equations (22.32) and (22.33) over all k sites. 

_1 ~ ~ A ex (_ Xir) = -1. i-- (-l)j Aj r( '/0) 
k L.. L.. 2r P 0 a L.._ ('-1)' J n r=1 i=1 2r v J-I J . 

(22.40) 

1 ~ ~ (A2/02 )r exp( -X,, 1( 2 ) 
- L.. L.. In[ 1 + r r] 
kn r=1 i=1 (A1/61 )rexp( -xj6 ir ) 

= 0.1 exp (-1) (3 + 6) 2.059 AID 3 -2(5.5)-6 (22.41) 

Equations (22.40) and (22.41) can be written in a different manner taking into account the 
transformation: 

X Y = - - In Ai (22.42) 
01 

which makes their left-hand sides dependent on 0 and A only. Since the values of 0 and A are 
assumed to be constant at every site, the following forms are thus obtained 

_1 f A exp( -y/6) = 1. t \-;~~~/ r(j/6) 
kn i=i 0 j=i 

(22.43) 

1 kn A 1 - E In (l + - exp[-(- - 1) Yi)) 
kn i=1 6 0 

(22.44) 
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The two procedures are mutually equivalent, at least when the available AFS' s have the same 
length at every site. Whichever is used, estimates of 8 1 andAI at any site need to be obtained 
together with regional estimates of 8 and A. In fact, both sets of equations depend on the basic 
component parameters, the former in an explicit manner and the latter through the transformation 
of equation (22.42). The iterative scheme proposed by Fiorentino and Gabriele (1985) for the 
regionalized TCEV -MLE procedure also successfully works using the POME-based estimation 
method. Details of this scheme can be readily found in Fiorentino, et al. (1986b). 

For a comparison between the proposed procedure and the MLE method, two features of 
the former look favorable: (1) Estimation of the basic component parameters, once e and A have 
been evaluated, is relatively simple, for only equation (22.35) needs to be solved numerically. (2) 
The equations contain a smaller number of exponentials to be solved. However, only a large 
number of Monte Carlo experiments covering a wide range of situations, can confirm whether the 
TCEV-POME estimation procedure is competitive. The results based on a limited number of 
computer simulation experiments will be discussed later on. 

22.2 Other Methods of Parameter Estimation 

The two parameter estimation methods have been proposed for fitting the TCEV distribution to 
annual flood series. Rossi, et al, (1984) presented a procedure based on the maximum likelihood 
estimation (MLE), and Fiorentino, et al. (1987) derived the entropy-based parameter estimation 
method. 

2.2.1 METHOD OF MAXIMUM LIKELIHOOD ESTIMATION 

The TCEV distribution has a finite probability, exp(-A1-A2) when x=O. Since such a probability 
is negligible, therefore, the probability density function, Equation (22.1) can be reexpressed as 

f(x) = F(x) 7(x) (22.45) 

where F(x) is the cumulative distribution function and 

so that the logarithm of the likelihood function, L, may be written as 

n n n 
L = L Inf(xJ = L In F(xj ) + L In 7(xJ (22.46) 

i=1 i=1 i=1 

Partially differentiating equation (22.46) with respect to the four parameters to be 
estimated separately and equating each derivative to zero yield 

(22.47) 
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(22.48) 

exp(-xi 181)(1-xi I81) 
--------] =0 

'P(x,) 
I 

(22.49) 

exp (- Xi 182 )( 1- xi 182 ) 
----------------]=0 

'P(x,) 
I 

Therefore, the estimation equations given by Rossi et aI, (1984) are 

(22,50) 

(22,51) 

(22,52) 

exp (- xJ 8 I) 
'P (XI) 

(22,53) 

~ Xi exp ( - x) e 2 ) ~ ~ exp ( - xJ e 2 ) 

e 2 = [,6' 'P (Xi) ] / [tt Xi exp (- Xi / e 2 ) + tt '¥ (XI) 

(22,54) 

The four equations (22,51)-(22,54) can be solved by an iterative scheme involving successive 
substitution, 

22,2.3 METHOD OF PROBABILITY WEIGHTED MOMENTS 

For the TCEV distribution the probability weighted moments, PWMr, are (Beran, et aI., 1986): 
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where 

(J 
P W M = E [ x { F ( x ) }' ] = P W M (I) +_1 , , r + 1 

(J 
PWM ,(I) =_1 [r+Iog A, I +Iog( r+l) 

r+l 

is the rth probability weighted moment of the basic series, and 

-
T, = L (-I)j-\A, j (r+l)j(l-1/6) r(jIO) I j! 

i=1 

and y is the Euler's constant. Thus, we have 

n 

(22.55) 

(22.56) 

(22.57) 

Wo = (J d r + In A, I + L ( -1) i-! A, j r (j I (J ) I r (j + 1)] (22.58) 
i=1 

W2 = ~ [r + In A, I + In 3 + t ( -1) j-I A, j 3j (1-l16) r (j I (J) I r (j + I) ] (22.60) 
3 i~ 

W3 = ~ [r + In A, I + In 4 + t ( -I) j-I A, j 4 j(l-1/6) r (j / (J) / r (j + 1) ] (22.61) 
4 i~ 

Given a random sample of size n from the TCEV distribution, estimation ofPWMr is most 
conveniently based on the ordered sample XI :s; Xz :s; ... :s; xn• The statistic 

1 ~ (j-l)(j-2) ........... (j-r) 
b =- L. 

, n j=1 (n-I)(n-2) ............... (n-r) 
(22.62) 

is an unbiased estimator ofWr (Landwehr, et aI., 1986). Equations (22.58)-(22.61) can be solved 
by an iterative scheme involving successive substitution. 
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22.3 Comparative Evaluation of Parameter Estimators 

It is important to evaluate the performance of all available estimators of a distribution, especially 
for small sample sizes, for which the variability of estimators is quite large and so is the marked 
difference in their performance. To minimize design losses, one would like to use the most 
efficient estimator. Approximate formulae can be derived for asymptotic standard error of several 
of the estimators. But one is chiefly interested in the sampling properties of the estimators for 
rather small sizes (n~50) not covered by the asymptotic formulae. The sampling distribution of 
the estimator is generally intractable in the sample range of interest. Monte Carlo sampling 
experiments, therefore, offer an attractive procedure for evaluating and comparing the 
performance of estimators. Cunnane (1986) pointed out the simulation experiments that have been 
reported in most recent work on flood frequency analysis. Thus, the use of simulation has become 
a standard technique to evaluate the performance of competing estimators. 

22.3.1 EXPERIMENTAL DESIGN 

The estimation procedure, outlined above, was addressed, if only approximately, using the Monte 
Carlo technique, and generating synthetic series from a TCEV distribution with parameters 
8) = 10, A) = 10,8 = 3.067,andA = 0.173,whichiswhatwasusedtoevaluatetheTCEV­
MLE procedure (Fiorentino and Gabriele, 1985; Amell and Gabriele, 1986).Two measures of 
performance were used: the standardized bias (BIAS) and the standardized root mean square error 
(RMSE). Since the regionalization is the natural field for application of a distribution with a large 
number of parameters such as four, the attention was principally devoted to the assessment of the 
regionalized estimators. One hundred repetitions of forty synthetic series, each with forty years 
of record, were generated, i.e., 100 homogeneous regions, each with 40 gauged sites, were 
simulated. Then the regionalization algorithm described above was applied. For each repetition, 
a regional estimate of 8 and A together with forty on-site elements of 8) and A) were 
obtained. BIAS and RMSE of parameter and quantile regional estimators were then evaluated. 
Of course, due to the very short number of experiments, these results are not expected to 
reproduce the true values of BIAS and RMSE, but they do not provide a first order approximation 
of the likely results. 

22.3.2 BIASINPARAMETERESTIMATION 

The results of the parameter BIAS and RMSE analyses for each case showed that MLE always 
produced the highest BIAS in estimating A2 for all sample sizes over the two cases, and PWM 
produced the highest BIAS in estimating 82. For case 1, POME and PWM were comparable in 
estimating A2, and when n;:o, 100 MLE performed better in estimating 8\, 82 and A\, and when 
n<100 PWM performed better in estimating 8 1 and POME performed better in estimating 82 and 
POME and PWM were comparable in estimating A\; for case 2, PWM performed the best in esti­
mating 1..2 and ENT performed better in estimating 8\, 82 and 1..\. 

22.3.3 RMSEINPARAMETERESTIMATION 

The results of RMSE values in parameter estimation showed that MLE produced the highest 
RMSE in estimating A2 and PWM performed the worst in estimating 82 for all sample sizes over 
the two cases. For case 1, when n~ 100 PWM performed better in estimating eland Al while when 
n> 1 00 MLE performed better, and ENT produced the least RMSE in estimating 1..2 and MLE 
performed the best in estimating 82 for all sample sizes; for case 2 PWM performed better in 
estimating 8 1, Al and 1..2, and POME performed better in estimating 82• 
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22.3.4 BIAS ANDRMSEIN QUANTILE ESTIMATION 

The BIAS and RMSE values of the quantile estimates for the TCEV showed that, in general, MLE 
performed better in terms of quantile BIAS and RMSE for all sample sizes over the two cases. 

22.3.5 CONCLUDING REMARKS 

The results on relative performance of the three parameter estimation procedures showed that for 
case 1, PWM performed better when the sample size (n) ~ 100, and MLE performed better when 
n> 1 00; for case 2, POME performed the best for all sample sizes. For case 1, POME performed 
better for small sample sizes (n<100) and MLE performed better for large sample sizes (n2100); 
for case 2, MLE performed better. 
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